Lithography hotspot detection in the physical verification phase is one of the most important techniques in today's optical lithography based manufacturing process. Although lithography simulation based hotspot detection is widely used, it is also known to be time-consuming. To detect hotspots in a short runtime, several machine learning based methods have been proposed. However, it is difficult to realize highly accurate detection without an increase in false alarms because an appropriate layout feature is undefined. This paper proposes a new method to automatically extract a proper layout feature from a given layout for improvement in detection performance of machine learning based methods. Experimental results show that using a deep neural network can achieve better performance than other frameworks using manually selected layout features and detection algorithms, such as conventional logistic regression or artificial neural network.
Lithography simulation is one of the key steps in physical verification, enabled by the substantial optical and resist models. A resist model bridges the aerial image simulation to printed patterns. While the effectiveness of learning-based solutions for resist modeling has been demonstrated, they are considerably data-demanding. Meanwhile, a set of manufactured data for a specific lithography configuration is only valid for the training of one single model, indicating low data efficiency. Due to the complexity of the manufacturing process, obtaining enough data for acceptable accuracy becomes very expensive in terms of both time and cost, especially during the evolution of technology generations when the design space is intensively explored. In this work, we propose a new resist modeling framework for contact layers, utilizing existing data from old technology nodes and active selection of data in a target technology node, to reduce the amount of data required from the target lithography configuration. Our framework based on transfer learning and active learning techniques is effective within a competitive range of accuracy, i.e., 3-10X reduction on the amount of training data with comparable accuracy to the state-of-the-art learning approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.