The renoprotective effect of cilnidipine ((+/-)-2-methoxyethyl 3-phenyl-2(E)-propenyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3,5-pyridinedicarboxylate, CAS 132203-70-4), a L/N-type calcium channel antagonist, on puromycin aminonucleoside (PAN)-induced nephrosis was investigated in rats. In the Experiment I, rats were given an intravenous injection of PAN (70 mg/kg). Cilnidipine (3 mg/kg/day) and enalapril (CAS 75847-73-3, 5 mg/kg/day) were administered orally from 6 days after treatment with PAN (day 6) to day 26, and urinary analysis was performed on days 9, 15, 20 and 27. In the Experiment II, nephrosis was also induced by intravenous injection of PAN (70 or 100 mg/kg) in rats which were treated with cilnidipine and enalapril from days 6 to 10. Systolic blood pressure was measured on day 7 and urinary analysis was performed on day 10. On day 11, serum was collected and the kidneys were removed for immunofluorescence staining for nephrin and podocin proteins. In PAN-treated rats, the daily urinary protein excretion was dramatically elevated on day 5, reached a peak on day 9 and gradually returned to a normal level from days 15 to 27. Cilnidipine (3 mg/kg/ day) significantly suppressed the increase in proteinuria on day 9 and also improved the decrease in creatinine clearance without evident effect on the blood pressure. Furthermore, the elevations in serum total cholesterol and triglyceride tended to be suppressed by cilnidipine. The expression of nephrin and podocin proteins in PAN-treated rats showed the granular pattern in the glomeruli, while the intensity of staining seemed to be dependent on the urinary protein excretion level in the cilnidipine-treated rats. The results obtained in this study suggest a renoprotective effect of cilnidipine in PAN-induced nephrosis in rats.
A monocistronic small protein, BpOF4_01690, was annotated in alkaliphilic Bacillus pseudofirmus OF4. It comprises 59 amino acids and is hydrophobic. Importantly, homologs of this protein were identified only in alkaliphiles. In this study, a mutant with a BpOF4_01690 gene deletion (designated Δ01690) exhibited weaker growth than that of the wild type in both malate-based defined and glucose-based defined media under low-sodium conditions at pH 10.5. Additionally, the enzymatic activity of the respiratory chain of Δ01690 was much lower than that of the wild type. These phenotypes were similar to those of a ctaD deletion mutant and an atpB-F deletion mutant. Therefore, we hypothesize that BpOF4_01690 plays a critical role in oxidative phosphorylation under highly alkaline conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.