Keywords: periodic structure, drainage property, equilibrium contact angle, sliding angle, staggered array, micro-electromechanical systems (MEMS) The purpose of this research is to clarify the effects of the equilibrium contact angle on the drainage property of water from microperiodic structures. Resin samples with 3 different equilibrium contact angles were fabricated by lithography and the UV nanoimprint technique. To consider the effect of the Cassie-Baxter and Wenzel states on drainage property, four types of microperiodic structures with varying aspect ratios were fabricated. Thus, in total, 12 test pieces, each consisting of a staggered pillar array, were used. We attempted to improve the drainage property by optimizing the microperiodic structure. A tilted plate method was modified to evaluate these microperiodic structures. From the results, the sliding angle and sliding velocity reached 14° and 171.9 mm/s, respectively, when a material with a sliding angle of 65° on a smooth surface was used. A promising result is that the threshold level for hydrophobicity introduced by the microperiodic structures was below 90° for a water droplet in the Cassie-Baxter state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.