Reactive gliosis is the universal reaction to brain injury, but the precise origin and subsequent fate of the glial cells reacting to injury are unknown. Astrocytes react to injury by hypertrophy and up-regulation of the glial-fibrillary acidic protein (GFAP). Whereas mature astrocytes do not normally divide, a subpopulation of the reactive GFAP ؉ cells does so, prompting the question of whether the proliferating GFAP ؉ cells arise from endogenous glial progenitors or from mature astrocytes that start to proliferate in response to brain injury. Here we show by genetic fate mapping and cell type-specific viral targeting that quiescent astrocytes start to proliferate after stab wound injury and contribute to the reactive gliosis and proliferating GFAP ؉ cells. These proliferating astrocytes remain within their lineage in vivo, while a more favorable environment in vitro revealed their multipotency and capacity for self-renewal. Conversely, progenitors present in the adult mouse cerebral cortex labeled by NG2 or the receptor for the plateletderived growth factor (PDGFR␣) did not form neurospheres after (or before) brain injury. Taken together, the first fate-mapping analysis of astrocytes in the adult mouse cerebral cortex shows that some astrocytes acquire stem cell properties after injury and hence may provide a promising cell type to initiate repair after brain injury.astrocytes ͉ cell fate ͉ cerebral cortex ͉ stem cells
Astrocytes are thought to play a variety of key roles in the adult brain, such as their participation in synaptic transmission, in wound healing upon brain injury, and adult neurogenesis. However, to elucidate these functions in vivo has been difficult because of the lack of astrocyte-specific gene targeting. Here we show that the inducible form of Cre (CreERT2) expressed in the locus of the astrocyte-specific glutamate transporter (GLAST) allows precisely timed gene deletion in adult astrocytes as well as radial glial cells at earlier developmental stages. Moreover, postnatal and adult neurogenesis can be targeted at different stages with high efficiency as it originates from astroglial cells. Taken together, this mouse line will allow dissecting the molecular pathways regulating the diverse functions of astrocytes as precursors, support cells, repair cells, and cells involved in neuronal information processing.
In the mammalian brain, neurogenesis continues only in few regions of the forebrain. The molecular signals governing neurogenesis in these unique neurogenic niches, however, are still ill defined. Here, we show that bone morphogenic protein (BMP)-mediated signaling is active in adult neural stem cells and is crucial to initiate the neurogenic lineage in the adult mouse subependymal zone. Conditional deletion of Smad4 in adult neural stem cells severely impairs neurogenesis, and this is phenocopied by infusion of Noggin, an extracellular antagonist of BMP. Smad4 deletion in stem, but not progenitor cells, as well as Noggin infusion lead to an increased number of Olig2-expressing progeny that migrate to the corpus callosum and differentiate into oligodendrocytes. Transplantation experiments further verified the cell-autonomous nature of this phenotype. Thus, BMP-mediated signaling via Smad4 is required to initiate neurogenesis from adult neural stem cells and suppress the alternative fate of oligodendrogliogenesis.
Adult neurogenesis is restricted to two distinct areas of the mammalian brain: the olfactory bulb (OB) and the dentate gyrus (DG). Despite its spatial restriction, adult neurogenesis is of crucial importance for sensory processing and learning and memory. Although it has been shown that tens of thousands of new neurons arrive in the OB and DG every day with about half of them surviving after integration, the total contribution of adult neurogenesis to the pre-existing network remains mostly unknown. This is because of previous approaches labeling only a small proportion of adult-generated neurons. Here, we used genetic fate mapping to follow the majority of adult-generated neurons over long periods. Our data demonstrate two distinct modes of neuron addition to the pre-existing network. In the glomerular layer of the OB, there is a constant net addition of adult-generated neurons reaching a third of the total neuronal population within 9 months. In contrast, adult neurogenesis contributes to only a minor fraction of the entire neuronal network in the granular cell layer of the OB and the DG. Although the fraction of adult generated neurons can be further increased by an enriched environment, it still remains a minority of the neuronal network in the DG. Thus, neuron addition is distinct and tightly regulated in the neuronal networks that incorporate new neurons life long.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.