Eric Clar's ideas concerning "aromatic sextets" are extended to a quantitative format in terms of a polynomial called the "Clar 2-nomial", along with related derivative quantities. The quantification is successfully tested to make correlations with a selection of numerical data, including resonance energies, bond lengths, and NICS ring-aromaticity values.
The Pauling bond order can be viewed as a measure of the π-electron content of the respective carbon-carbon bond. In benzenoid hydrocarbons its values lie between 0 (in the case of essential single bonds) and 1 (in the case of essential double bonds). If the benzenoid molecule does not possess essential single and double bonds, then the Pauling bond orders are greater than 0 and less than 1, but may assume values arbitrarily close to 0 and 1. The π-electron content of a ring is equal to the sum of the π-electron contents of the carbon-carbon bonds forming this ring. We show that in benzenoid hydrocarbons the π-electron content of any (six-membered) ring lies between 0 and 5.5. If the molecule does not possess essential single and double bonds, then the π-electron content of any ring is greater than 0 and less than 5.5, but may assume values arbitrarily close to 0 and 5.5.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.