The recent increase in the use of graphene and its derivatives is due to their exceptional physicochemical, electrical, mechanical, and thermal properties as the industrial materials developed by involving graphene structures can fulfill future needs. In that view, the potential use of these graphene-containing nanomaterials in electronics applications has encouraged in-depth exploration of the electronic, conducting, and other functional properties. The protecting undifferentiated form of graphene has similarly been proposed for various applications, for example, as supercapacitors, photovoltaic and transparent conductors, touch screen points, optical limiters, optical frequency converters, and terahertz devices. The hybrid composite nanomaterials that undergo stimulus-induced optical and electrical changes are important for many new technologies based on switchable devices. As a two-dimensional smart electronic material, graphene has received widespread attention, and with that view, we aim to cover the various types of graphene oxide (GO)-based composites, linking their optical and electrical properties with their structural and morphological ones. We believe that the topics covered in this review can shed light on the development of high-yield GO-containing electronic materials, which can be fabricated as the field moves forward and makes more significant advances in smart optoelectronic devices.
The characteristics of 1 MeV electron irradiated GaAs solar cells grown on GaAs and Si substrates are studied under dark and AM 0 conditions. The short circuit currents (Isc) for GaAs/GaAs cell and GaAs/Si cell have been decreased at higher fluences. The degradation rate of Voc and Pmax for GaAs/Si is slower than that of GaAs/GaAs at the fluence 1×1016 cm−2. This is due to the high radiation resistance of saturation current. It has been due to slow generation of arsnic vacancies related defect (VAs) in the GaAs/Si solar cell, which is determined by photoluminescence analyses and deep level transient spectroscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.