The basal ganglia and motor thalamic nuclei are functionally and anatomically divided into the sensorimotor, supplementary motor, premotor, associative and limbic territories. There exist both primary segregated basal ganglia-thalamocortical loops and convergence of functionally related information from different cortical areas onto these cortical basal ganglia-thalamocortical loops. The basal ganglia-thalamocortical loop arising from the sensorimotor area, supplementary motor area (SMA), premotor area and cingulate motor area provides distinct segregated subloops through the functionally distinct striatal, pallidal and thalamic regions with partial overlap. The subthalamic nucleus (STN) is also topographically organized. The ventrolateral part of the caudal 2/3 levels of the medial pallidal segment (GPi) projects to the primary motor area via the oral part of the ventral lateral thalamic nucleus (VLo) (Voa, Vop by Hassler's nomenclature). The thalamic relay nuclei of the GPi projection to SMA are identified in the transitional zone of the VApc (parvicellular part of the anterior ventral nucleus)-VLo and in the rostromedial part of the VLo. The thalamic nuclei relaying the cingulate subloop are not yet clearly defined. The supplementary motor subloop appears to be divided into the pre-SMA and SMA proper subloops. The premotor area is also divided into the dorsal premotor area subloop and the ventral premotor area subloop. It is suggested that the limbic loop consists of a number of subloops in the monkey as indicated by Haber et al. and in rats. We review here the microcircuitry of the striatum, as well as the convergence and integration between the functionally segregated loops. Finally, we discuss the functional implications of striatal connections.
Sickness evokes various neural responses, one of which is activation of the hypothalamo-pituitary-adrenal (HPA) axis. This response can be induced experimentally by injection of bacterial lipopolysaccharide (LPS) or inflammatory cytokines such as IL-1. Although prostaglandins (PGs) long have been implicated in LPSinduced HPA axis activation, the mechanism downstream of PGs remained unsettled. By using mice lacking each of the four PGE receptors (EP1-EP4) and an EP1-selective antagonist, ONO-8713, we showed that both EP1 and EP3 are required for adrenocorticotropic hormone release in response to LPS. Analysis of c-Fos expression as a marker for neuronal activity indicated that both EP1 and EP3 contribute to activation of neurons in the paraventricular nucleus of the hypothalamus (PVN). This analysis also revealed that EP1, but not EP3, is involved in LPS-induced activation of the central nucleus of the amygdala. EP1 immunostaining in the PVN revealed its localization at synapses on corticotropin-releasing hormone-containing neurons. These findings suggest that EP1-and EP3-mediated neuronal pathways converge at corticotropin-releasing hormone-containing neurons in the PVN to induce HPA axis activation upon sickness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.