SummaryThe mechanisms by which mutations in FUS and other RNA binding proteins cause ALS and FTD remain controversial. We propose a model in which low-complexity (LC) domains of FUS drive its physiologically reversible assembly into membrane-free, liquid droplet and hydrogel-like structures. ALS/FTD mutations in LC or non-LC domains induce further phase transition into poorly soluble fibrillar hydrogels distinct from conventional amyloids. These assemblies are necessary and sufficient for neurotoxicity in a C. elegans model of FUS-dependent neurodegeneration. They trap other ribonucleoprotein (RNP) granule components and disrupt RNP granule function. One consequence is impairment of new protein synthesis by cytoplasmic RNP granules in axon terminals, where RNP granules regulate local RNA metabolism and translation. Nuclear FUS granules may be similarly affected. Inhibiting formation of these fibrillar hydrogel assemblies mitigates neurotoxicity and suggests a potential therapeutic strategy that may also be applicable to ALS/FTD associated with mutations in other RNA binding proteins.
To investigate lipid rafts as a site where amyloid  protein (A) oligomers might accumulate and cause toxicity in Alzheimer's disease (AD), we analyzed A in the Tg2576 transgenic mouse model of AD. A was highly concentrated in lipid rafts, which comprise a small fraction of brain volume but contain 27% of brain A42 and 24% of A40 in young mice. In the Tg2576 model, memory impairment begins at 6 months before amyloid plaques are visible. Here we show that A dimers appear in lipid rafts at 6 months and that raft A, which is primarily dimeric, rapidly accumulates reaching levels Ͼ500ϫ those in young mice by 24 -28 months. A similar large accumulation of dimeric A was observed in lipid rafts from AD brain. In contrast to extracellular amyloid fibrils, which are SDS-insoluble, virtually all A in lipid rafts is SDS soluble. Coupled with recent studies showing that synthetic and naturally occurring A oligomers can inhibit hippocampal long-term potentiation, the in vivo age-dependent accumulation of SDS-soluble A dimers in lipid rafts at the time when memory impairment begins in Tg2576 mice provides strong evidence linking A oligomers to memory impairment. After dimeric A began to accumulate in lipid rafts of the Tg2576 brain, apolipoprotein E (ApoE) and then phosphorylated tau accumulated. A similar increase in ApoE and a large increase in phosphorylated tau was observed in lipid rafts from AD brain. These findings suggest that lipid rafts may be an important site for interaction between dimeric A, ApoE, and tau.
It is unclear whether mutations in fused in sarcoma (FUS) cause familial amyotrophic lateral sclerosis via a loss-of-function effect due to titrating FUS from the nucleus or a gain-of-function effect from cytoplasmic overabundance. To investigate this question, we generated a series of independent Caenorhabditis elegans lines expressing mutant or wild-type (WT) human FUS. We show that mutant FUS, but not WT-FUS, causes cytoplasmic mislocalization associated with progressive motor dysfunction and reduced lifespan. The severity of the mutant phenotype in C. elegans was directly correlated with the severity of the illness caused by the same mutation in humans, arguing that this model closely replicates key features of the human illness. Importantly, the mutant phenotype could not be rescued by overexpression of WT-FUS, even though WT-FUS had physiological intracellular localization, and was not recruited to the cytoplasmic mutant FUS aggregates. Our data suggest that FUS mutants cause neuronal dysfunction by a dominant gain-of-function effect related either to neurotoxic aggregates of mutant FUS in the cytoplasm or to dysfunction in its RNA-binding functions.
We examined the distribution of Pael-R, a newly identified substrate for Parkin, in Parkinson's disease (PD) and multiple system atrophy (MSA). Pael-R, Parkin, alpha-synuclein, and ubiquitin accumulated in Lewy bodies (LBs) and neurites. Pael-R was localized in the core of LBs. Parkin and alpha-synuclein accumulated in the halo, neuronal cell bodies, and processes. These findings potentially suggest the involvement of Pael-R in LB formation, and protection role of Parkin in Pael-R-mediated neurotoxicity in PD. The absence of Pael-R and Parkin in glial cytoplasmic inclusions (GCIs) in MSA implies a distinct pathway involved in the formation of LBs and GCIs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.