There is a need within human movement sciences for a markerless motion capture system, which is easy to use and sufficiently accurate to evaluate motor performance. This study aims to develop a 3D markerless motion capture technique, using OpenPose with multiple synchronized video cameras, and examine its accuracy in comparison with optical marker-based motion capture. Participants performed three motor tasks (walking, countermovement jumping, and ball throwing), and these movements measured using both marker-based optical motion capture and OpenPose-based markerless motion capture. The differences in corresponding joint positions, estimated from the two different methods throughout the analysis, were presented as a mean absolute error (MAE). The results demonstrated that, qualitatively, 3D pose estimation using markerless motion capture could correctly reproduce the movements of participants. Quantitatively, of all the mean absolute errors calculated, approximately 47% were <20 mm, and 80% were <30 mm. However, 10% were >40 mm. The primary reason for mean absolute errors exceeding 40 mm was that OpenPose failed to track the participant's pose in 2D images owing to failures, such as recognition of an object as a human body segment or replacing one segment with another depending on the image of each frame. In conclusion, this study demonstrates that, if an algorithm that corrects all apparently wrong tracking can be incorporated into the system, OpenPose-based markerless motion capture can be used for human movement science with an accuracy of 30 mm or less.
There is a need within human movement sciences for a markerless motion capture system, which is easy to use and sufficiently accurate to evaluate motor performance. This study aims to develop a 3D markerless motion capture technique, using OpenPose with multiple synchronized video cameras, and examine its accuracy in comparison with optical marker-based motion capture. Participants performed three motor tasks (walking, countermovement jumping, and ball throwing), with these movements measured using both marker-based optical motion capture and OpenPose-based markerless motion capture. The differences in corresponding joint positions, estimated from the two different methods throughout the analysis, were presented as a mean absolute error (MAE). The results demonstrated that, qualitatively, 3D pose estimation using markerless motion capture could correctly reproduce the movements of participants. Quantitatively, of all the mean absolute errors calculated, approximately 47% were less than 20 mm and 80% were less than 30 mm. However, 10% were greater than 40 mm. The primary reason for mean absolute errors exceeding 40mm was that OpenPose failed to track the participant's pose in 2D images owing to failures, such as recognition of an object as a human body segment, or replacing one segment with another depending on the image of each frame. In conclusion, this study demonstrates that, if an algorithm that corrects all apparently wrong tracking can be incorporated into the system, OpenPose-based markerless motion capture can be used for human movement science with an accuracy of 30mm or less.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.