This study aims to define the penetration of ampicillin and sulbactam into prostate tissue, develop a prostatic pharmacokinetic model of each drug, and assess the appropriateness of ampicillin-sulbactam regimens for the treatment of prostatitis and the prophylaxis of postoperative infection, based on a pharmacokinetic and pharmacodynamic simulation. Subjects were prostatic hyperplasia patients prophylactically receiving a 0.5-hour infusion of 1.5 g (1:0.5 g) or 3 g (2:1 g) ampicillin-sulbactam before transurethral resection of the prostate. Ampicillin and sulbactam concentrations in plasma and prostate tissue were measured. The prostate tissue/plasma ratios of both ampicillin and sulbactam were approximately 0.37 (area under the drug concentration-time curve), and penetration was similar. The prostatic population pharmacokinetic model, which included a covariate analysis, adequately predicted prostate tissue concentrations in our patient population. For therapeutic use, aiming for a bactericidal target of 50% of time above minimum inhibitory concentration (T > MIC) in prostate tissue, 3 g ampicillin-sulbactam 4 times daily achieved ≥90% expected probability against only Enterococcus faecalis in typical patients with a creatinine clearance (CL cr ) of 30 mL/min. For prophylactic use, aiming for a bacteriostatic target of 30% T > MIC, 3 g ampicillin-sulbactam 4 times daily achieved ≥90% expected probability of attaining the bacteriostatic target against E. faecalis and Proteus species when CL cr was 30 mL/min. Based on prostatic simulations, the present study provides helpful recommendations for the treatment of bacterial prostatitis and preoperative prophylaxis in prostatectomy.
This study aimed to assess the dosing regimens of ampicillin/sulbactam for pneumonia based on pulmonary pharmacokinetic (PK)/pharmacodynamic (PD) target attainment. Using the literature data, we developed pulmonary PK models and estimated the probabilities of attaining PK/PD targets in lung tissue. Against bacteria other than A. baumannii (the general treatment), the PK/PD target was set as both 50% time above the minimum inhibitory concentration (T > MIC) for ampicillin and 50% T > 0.5 MIC for sulbactam. For the A. baumannii treatment, the PK/PD target was set as 60% T > MIC for sulbactam. The pulmonary PK/PD breakpoint was defined as the highest minimum inhibitory concentration (MIC) at which the target attainment probability in the lung tissue was ≥90%. The lung tissue/serum area under the drug concentration–time curve from 0 to 3 h (AUC0–3h) ratios for ampicillin and sulbactam were 0.881 and 0.368, respectively. The ampicillin/sulbactam AUC0–3h ratio in the lung tissue was 3.89. For the general treatment, the pulmonary PK/PD breakpoint for ampicillin/sulbactam at 3 g four times daily in typical patients with creatinine clearance (CLcr) of 60 mL/min was 2 μg/mL, which covered the MIC90s (the MICs that inhibited the growth of 90% of the strains) of most gram-positive and gram-negative bacteria. For the A. baumannii treatment, the pulmonary PK/PD breakpoint for ampicillin/sulbactam at 9 g 4-h infusion three times daily (27 g/day) in patients with a CLcr of 60 mL/min was 4 μg/mL, which covered the MIC90 of A. baumannii. A PK/PD evaluation for pneumonia should be performed in the lung tissue (the target site) rather than in the blood because sulbactam concentrations are lower in lung tissue. These findings should facilitate the selection of ampicillin/sulbactam regimens for pneumonia caused by various bacteria, including A. baumannii.
Background: We aimed to develop population pharmacokinetic (PK) models of ampicillin and sulbactam using pooled data analysis and to optimize dosing regimens of ampicillin-sulbactam (combination ratio of 2:1) in pediatric patients. Methods: Population PK models of ampicillin and sulbactam were separately developed by simultaneously fitting plasma and urine data from pediatric patients in 14 published studies. Based on these models, we estimated the probability of attaining a pharmacodynamic (PD) target [50% of time that free drug concentrations above the minimum inhibitory concentration, 50% fT > minimum inhibitory concentration (MIC)] against MIC 90 [MIC that blocked the growth of 90% of the strains] of common bacteria in community-acquired pneumonia. Results: The analysis included 54 pediatric patients (0.083-16.42 years of age, 4.0-77.0 kg of body weight). A total of 284 plasma concentrations and 90 urinary excretions from 0 to 6 hours after administration were used for population PK modeling. The data were adequately described by 2-compartment models for ampicillin and sulbactam. Age was not a statistically significant covariate in the PK of either drug. The PK/PD breakpoint MICs for 45 mg/kg 3 times daily and 75 mg/kg 4 times daily (q.i.d.) were 0.25 and 1 μg/mL, respectively. For empiric therapy of communityacquired pneumonia, because MIC 90 values for the main target pathogens is high (MIC 90 = 2 μg/mL for Streptococcus pneumoniae and MIC 90 = 4 μg/mL for Haemophilus influenzae), 75 mg/kg q.i.d. (Food and Drug Administration-approved maximum dosage in United States) might be better than 45 mg/kg 3 times daily (within approved dosage in Japan) to cover many pathogens. Conclusions: From the results of this PK/PD approach, 75 mg/kg q.i.d. (Food and Drug Administration-approved maximum dosage) should be recommended in the empiric therapy of community-acquired pneumonia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.