Rho kinase signaling mediates increased basal pulmonary vascular tone in chronically hypoxic rats. Am J Physiol Lung Cell Mol Physiol 287: L665-L672, 2004. First published September 5, 2003 10.1152/ ajplung.00050.2003.-Recent evidence suggests that Rho/Rho kinase signaling plays an important role in the sustained vasoconstriction induced by many agonists and is involved in the pathogenesis of systemic vascular diseases. However, little is known about its role in increased vascular tone in hypoxic pulmonary hypertension (PH). The purpose of this study was to examine whether Rho/Rho kinasemediated Ca 2ϩ sensitization contributed to sustained vasoconstriction and increased vasoreactivity in hypoxic PH in rats. Acute intravenous administration of Y-27632, a Rho kinase inhibitor, nearly normalized the high pulmonary arterial blood pressure and total pulmonary resistance in chronically hypoxic rats. In contrast to nifedipine, Y-27632 also markedly decreased elevated basal vascular tone in hypertensive blood-perfused lungs and isolated pulmonary arteries. Y-27632 and another Rho kinase inhibitor, HA-1077, completely reversed nitro-L-arginine-induced vasoconstriction in physiological salt solution-perfused hypertensive lungs, whereas inhibitors of myosin light chain kinase (ML-9), protein kinase C (GF-109203X), phosphatidylinositol 3-kinase (LY-294002), and tyrosine kinase (tyrphostin A23) caused only partial or no reversal of the vasoconstriction. Vasoconstrictor responses to KCl were augmented in hypertensive physiological salt solution-perfused lungs and pulmonary arteries, and the augmentation was eliminated by Y-27632. These results suggest that Rho/Rho kinase-mediated Ca 2ϩ sensitization plays a central role in mediating sustained vasoconstriction and increased vasoreactivity in hypoxic PH.hypoxic pulmonary hypertension; Y-27632; calcium sensitization; RhoA SUSTAINED ABNORMAL VASOCONSTRICTION is one of the major causes of many cardiovascular diseases, including pulmonary hypertension (PH). ]. This is referred to as Ca 2ϩ sensitization (9, 43). Recent evidence indicates that although Ca 2ϩ /calmodulindependent MLCK-mediated MLC phosphorylation is the key factor for triggering VSMC contraction, Ca 2ϩ sensitization is important for the sustained phase of contraction (9, 43).The small GTPase RhoA, a member of the Rho family of small GTP-binding proteins, and its downstream effector Rho kinase (Rho/Rho kinase signaling) play a major role in the regulation of MLCP activity and, thus, Ca 2ϩ sensitization (9, 30, 43). RhoA is activated by various vasoconstrictors, including thromboxane, endothelin-1 (ET-1), and serotonin, the receptors of which are coupled to G proteins. Thus Rho/Rho kinase-mediated Ca 2ϩ sensitization is thought to be a major component in the sustained vasoconstriction induced by G protein-coupled receptor agonists. Selective Rho kinase inhibitors, such as Y-27632 (45) and fasudil (HA-1077) (2, 41, 45), effectively reverse the sustained vasoconstriction induced by many agonists (3,25,34).The pathogenesi...
We have found in chronically hypoxic rats that acute intravenous administration of the Rho kinase inhibitor Y-27632 nearly normalizes the pulmonary hypertension (PH) but has no pulmonary vascular selectivity. In this study, we tested if oral or inhaled Y-27632 would be an effective and selective pulmonary vasodilator in hypoxic PH. Although acute oral Y-27632 caused a marked and sustained decrease in mean pulmonary arterial pressure (MPAP), it also decreased mean systemic arterial pressure (MSAP). In contrast, 5 minutes of inhaled Y-27632 decreased MPAP without reducing MSAP. The hypotensive effect of inhaled Y-27632 on hypoxic PH was greater than that of inhaled nitric oxide, and the effect lasted for at least 5 hours. Inhaled fasudil, another Rho kinase inhibitor, caused selective MPAP reductions in monocrotaline-induced PH and in spontaneous PH in fawn-hooded rats, as well as in chronically hypoxic rats. These results suggested that inhaled Y-27632 was more effective than inhaled nitric oxide as a selective pulmonary vasodilator in hypoxic PH, and that Rho kinase-mediated vasoconstriction was also involved in the other models of PH. Inhaled Rho kinase inhibitors might be useful for acute vasodilator testing in patients with PH, and future work should evaluate their efficacy in the long-term treatment of PH.
The fawn-hooded rat (FHR) develops severe pulmonary hypertension (PH) when raised for the first 3-4 wk of life in the mild hypoxia of Denver's altitude (5,280 ft.). The PH is associated with sustained pulmonary vasoconstriction and pulmonary artery remodeling. Furthermore, lung alveolarization and vascularization are reduced in the Denver FHR. We have recently shown that RhoA/Rho kinase signaling is involved in both vasoconstriction and vascular remodeling in animal models of hypoxic PH. In this study, we investigated the role of RhoA/Rho kinase signaling in the PH of Denver FHR. In alpha-toxin permeabilized pulmonary arteries from Denver FHR, the contractile sensitivity to Ca2+ was increased compared with those from sea-level FHR. RhoA activity and Rho kinase I protein expression in pulmonary arteries of Denver FHR (10-wk-old) were higher than in those of sea-level FHR. Acute inhalation of the Rho kinase inhibitor fasudil selectively reduced the elevated pulmonary arterial pressure in Denver FHR in vivo. Chronic fasudil treatment (30 mg.kg-1.day-1, from birth to 10 wk old) markedly reduced the development of PH and improved lung alveolarization and vascularization in Denver FHR. These results suggest that Rho kinase-mediated sustained vasoconstriction, through increased Ca2+ sensitivity, plays an important role in the established PH and that RhoA/Rho kinase signaling contributes significantly to the development of PH and lung dysplasia in mild hypoxia-exposed FHR.
These results indicate that the protective effect of dehydroepiandrosterone against hypoxic pulmonary hypertension may involve upregulation of pulmonary artery soluble guanylate cyclase protein expression and augmented pulmonary artery vasodilator responsiveness to nitric oxide.
RhoA/Rho kinase (ROCK) signaling plays a key role in the pathogenesis of experimental pulmonary hypertension (PH). Dehydroepiandrosterone (DHEA), a naturally occurring steroid hormone, effectively inhibits chronic hypoxic PH, but the responsible mechanisms are unclear. This study tested whether DHEA was also effective in treating monocrotaline (MCT)-induced PH in left pneumonectomized rats and whether inhibition of RhoA/ROCK signaling was involved in the protective effect of DHEA. Three weeks after MCT injection, pneumonectomized rats developed PH with severe vascular remodeling, including occlusive neointimal lesions in pulmonary arterioles. In lungs from these animals, we detected cleaved (constitutively active) ROCK I as well as increases in activities of RhoA and ROCK and increases in ROCK II protein expression. Chronic DHEA treatment (1%, by food for 3 wk) markedly inhibited the MCT-induced PH (mean pulmonary artery pressures after treatment with 0% and 1% DHEA were 33+/-5 and 16+/-1 mmHg, respectively) and severe pulmonary vascular remodeling in pneumonectomized rats. The MCT-induced changes in RhoA/ROCK-related protein expression were nearly normalized by DHEA. A 3-wk DHEA treatment (1%) started 3 wk after MCT injection completely inhibited the progression of PH (mean pulmonary artery pressures after treatment with 0% and 1% DHEA were 47+/-3 and 30+/-3 mmHg, respectively), and this treatment also resulted in 100% survival in contrast to 30% in DHEA-untreated rats. These results suggest that inhibition of RhoA/ROCK signaling, including the cleavage and constitutive activation of ROCK I, is an important component of the impressive protection of DHEA against MCT-induced PH in pneumonectomized rats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.