Multiple system atrophy (MSA) has varying clinical (MSA-P versus MSA-C) and pathological [striatonigral degeneration (SND) versus olivopontocerebellar atrophy (OPCA)] phenotypes. To investigate the spectrum of clinicopathological correlations, we performed a semi-quantitative pathological analysis of 100 MSA cases with well-characterized clinical phenotypes. In 24 areas, chosen from both the striatonigral (StrN) and olivopontocerebellar (OPC) regions, the severity of neuronal cell loss and gliosis as well as the frequency of glial (oligodendroglial) cytoplasmic inclusions (GCIs) and neuronal cytoplasmic inclusions (NCIs) were determined. Clinical information was abstracted from the patients' medical records, and the severity of bradykinesia in the first year of disease onset and in the final stages of disease was graded retrospectively. The degree of levodopa responsiveness and the presence or absence of cerebellar ataxia and autonomic symptoms were also recorded. We report that 34% of the cases were SND- and 17% were OPCA-predominant, while the remainder (49%) had equivalent SND and OPCA pathology. We found a significant correlation between the frequency of GCIs and the severity of neuronal cell loss, and between these pathological changes and disease duration. Our data also suggest that GCIs may have more influence on the OPC than on the StrN pathology. Moreover, we raise the possibility that a rapid process of neuronal cell loss, which is independent of the accumulation of GCIs, occurs in the StrN region in MSA. There was no difference in the frequency of NCIs in the putamen, pontine nucleus and inferior olivary nucleus between the SND and OPCA subtypes of MSA, confirming that this pathological abnormality is not associated with a particular subtype of the disease. In the current large post-mortem series, 10% of the cases had associated Lewy body pathology, suggesting that this is not a primary process in MSA. As might be expected, there was a significant difference in the severity of bradykinesia and the presence of cerebellar signs between the pathological phenotypes: the SND phenotype demonstrates the most severe bradykinesia and the OPCA phenotype the more frequent occurrence of cerebellar signs, confirming that the clinical phenotype is dependent on the distribution of pathology within the basal ganglia and cerebellum. Putaminal involvement correlated with a poor levodopa response in MSA. Our finding that relatively mild involvement of the substantia nigra is associated clinically with manifest parkinsonism, while more advanced cerebellar pathology is required for ataxia, may explain why the parkinsonian presentation is predominant over ataxia in MSA.
The reactive changes in different types of astrocytes were analyzed in parkinsonian syndromes in order to identify common reactions and their relationship to disease severity. Immunohistochemistry was used on formalin-fixed, paraffin-embedded sections from the putamen, pons, and substantia nigra from 13 Parkinson disease (PD), 29 multiple-system atrophy (MSA), 34 progressive supranuclear palsy (PSP), 10 corticobasal degeneration(CBD), and 13 control cases. Classic reactive astrocytes were observed in MSA, PSP, and CBD, but not PD cases; the extent of reactivity correlated with indices of neurodegeneration and disease stage. Approximately 40% to 45% of subcortical astrocytes in PD and PSP accumulated alpha-synuclein and phospho-tau, respectively; subcortical astrocytes in MSA and CBD cases did not accumulate these proteins. Protoplasmic astrocytes were identified from fibrous astrocytes by their expression of parkin coregulated gene and apolipoprotein D, and accumulated abnormal proteins in PD, PSP, and CBD, but not MSA. The increased reactivity of parkin coregulated gene-immunoreactive protoplasmic astrocytes correlated with parkin expression in PSP and CBD. Nonreactive protoplasmic astrocytes were observed in PD and MSA cases; in PD, they accumulated alpha-synuclein, suggesting that the attenuated response might be due to an increase in the level of alpha-synuclein. These heterogeneous astroglial responses in PD, MSA, PSP, and CBD indicate distinct underlying pathogenic mechanisms in each disorder.
We describe four cases of a new clinicopathological entity presenting with either a frontotemporal dementia or corticobasal degeneration syndrome with a mean age of onset of 45 years (range 41-50) characterized pathologically by deposition of neurofilament proteins. All four patients had a rapidly progressive course and have become mute and non-ambulatory, and three have died after mean illness duration of only 3 years (range 2 1/2 -4). Both structural (MRI) and functional (PET and SPECT) imaging demonstrated frontal and temporal lobe and basal ganglia involvement. Gross neuropathological examination in the three deceased patients (the fourth patient, still alive, was diagnosed by brain biopsy) revealed changes affecting predominantly the frontal and temporal cortices, basal ganglia and brainstem. There was superficial linear spongiosis affecting the frontal lobes in all three autopsied patients, and severe caudate atrophy was noted in two of them and demonstrated on MRI in the living patient. On routine staining, there were numerous intracytoplasmic inclusions, which ranged from eosinophilic to basophilic. Some had a clearly defined basophilic margin, while others were granular with a hyaline core. With modified Bielschowsky silver technique, a small number of the inclusions were intensely stained. Inclusions were not labelled with other silver stains. Immuno histochemistry revealed that the inclusions were immunoreactive with antibodies to neurofilament heavy and light chain subunits and to ubiquitin, but not with antibodies to tau and alpha-synuclein. These neurofilament- and ubiquitin-positive inclusions were widespread, specific to neurons and occasionally intranuclear. The frequency and distribution of the inclusions and the silver and immunohistochemical profiles in these four cases is novel and has not been described in detail before. We propose the term neurofilament inclusion body disease for this entity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.