The search for active semiconductor photocatalysts that directly split water under visible-light irradiation remains one of the most challenging tasks for solar-energy utilization. Over the past 30 years, the search for such materials has focused mainly on metal-ion substitution as in In(1-x)Ni(x)TaO(4) and (V-,Fe- or Mn-)TiO(2) (refs 7,8), non-metal-ion substitution as in TiO(2-x)N(x) and Sm(2)Ti(2)O(5)S(2) (refs 9,10) or solid-solution fabrication as in (Ga(1-x)Zn(x))(N(1-x)O(x)) and ZnS-CuInS(2)-AgInS(2) (refs 11,12). Here we report a new use of Ag(3)PO(4) semiconductor, which can harness visible light to oxidize water as well as decompose organic contaminants in aqueous solution. This suggests its potential as a photofunctional material for both water splitting and waste-water cleaning. More generally, it suggests the incorporation of p block elements and alkali or alkaline earth ions into a simple oxide of narrow bandgap as a strategy to design new photoelectrodes or photocatalysts.
Direct conversion of methane into methanol and other liquid oxygenates still confronts considerable challenges in activating the first C−H bond of methane and inhibiting overoxidation. Here, we report that ZnO loaded with appropriate cocatalysts (Pt, Pd, Au, or Ag) enables direct oxidation of methane to methanol and formaldehyde in water using only molecular oxygen as the oxidant under mild light irradiation at room temperature. Up to 250 micromoles of liquid oxygenates with ∼95% selectivity is achieved for 2 h over 10 mg of ZnO loaded with 0.1 wt % of Au. Experiments with isotopically labeled oxygen and water reveal that molecular O 2 , rather than water, is the source of oxygen for direct CH 4 oxidation. We find that ZnO and cocatalyst could concertedly activate CH 4 and O 2 into methyl radical and mildly oxidative intermediate (hydroperoxyl radical) in water, which are two key precursor intermediates for generating oxygenated liquid products in direct CH 4 oxidation. Our study underlines two equally significant aspects for realizing direct and selective photooxidation of CH 4 to liquid oxygenates, i.e., efficient C−H bond activation of CH 4 and controllable activation of O 2 .
Water splitting represents a promising technology for renewable energy conversion and storage, but it is greatly hindered by the kinetically sluggish oxygen evolution reaction (OER). Here, using Au-nanoparticle-decorated Ni(OH)2 nanosheets [Ni(OH)2-Au] as catalysts, we demonstrate that the photon-induced surface plasmon resonance (SPR) excitation on Au nanoparticles could significantly activate the OER catalysis, specifically achieving a more than 4-fold enhanced activity and meanwhile affording a markedly decreased overpotential of 270 mV at the current density of 10 mA cm(-2) and a small Tafel slope of 35 mV dec(-1) (no iR-correction), which is much better than those of the benchmark IrO2 and RuO2, as well as most Ni-based OER catalysts reported to date. The synergy of the enhanced generation of Ni(III/IV) active species and the improved charge transfer, both induced by hot-electron excitation on Au nanoparticles, is proposed to account for such a markedly increased activity. The SPR-enhanced OER catalysis could also be observed over cobalt oxide (CoO)-Au and iron oxy-hydroxide (FeOOH)-Au catalysts, suggesting the generality of this strategy. These findings highlight the possibility of activating OER catalysis by plasmonic excitation and could open new avenues toward the design of more-energy-efficient catalytic water oxidation systems with the assistance of light energy.
Graphitic carbon nitride (g‐C3N4) has recently emerged as an attractive photocatalyst for solar energy conversion. However, the photocatalytic activities of g‐C3N4 remain moderate because of the insufficient solar‐light absorption and the fast electron–hole recombination. Here, defect‐modified g‐C3N4 (DCN) photocatalysts, which are easily prepared under mild conditions and show much extended light absorption with band gaps decreased from 2.75 to 2.00 eV, are reported. More importantly, cyano terminal CN groups, acting as electron acceptors, are introduced into the DCN sheet edge, which endows the DCN with both n‐ and p‐type conductivities, consequently giving rise to the generation of p–n homojunctions. This homojunction structure is demonstrated to be highly efficient in charge transfer and separation, and results in a fivefold enhanced photocatalytic H2 evolution activity. The findings deepen the understanding on the defect‐related issues of g‐C3N4‐based materials. Additionally, the ability to build homojunction structures by the defect‐induced self‐functionalization presents a promising strategy to realize precise band engineering of g‐C3N4 and related polymer semiconductors for more efficient solar energy conversion applications.
In this study, for the first time, {111} facet exposed anatase TiO2 single crystals are prepared via both F– and ammonia as the capping reagents. In comparison with the most investigated {001}, {010}, and {101} facets for anatase TiO2, the density functional theory (DFT) calculations predict that {111} facet owns a much higher surface energy of 1.61 J/m2, which is partially attributed to the large percentage of undercoordinated Ti atoms and O atoms existed on the {111} surface. These undercoordinated atoms can act as active sites in the photoreaction. Experimentally, it is revealed that this material exhibits the superior electronic band structure which can produce more reductive electrons in the photocatalytic reaction than those of the TiO2 samples exposed with majority {010}, {101}, and {001} facets. More importantly, we demonstrate that this material is an excellent photocatalyst with much higher photocatalytic activity (405.2 μmol h–1), about 5, 9, and 13 times that of the TiO2 sample exposed with dominant {010}, {101}, and {001} facets, respectively. Both the superior surface atomic structure and electronic band structure significantly contribute to the enhanced photocatalytic activity. This work exemplifies that the surface engineering of semiconductors is one of the most effective strategies to achieve advanced and excellent performance over photofunctional materials for solar energy conversion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.