Unveiling the active phase of catalytic materials under reaction conditions is important for the construction of efficient electrocatalysts for selective nitrate reduction to ammonia. The origin of the prominent activity enhancement for CuO (Faradaic efficiency: 95.8 %, Selectivity: 81.2 %) toward selective nitrate electroreduction to ammonia was probed. 15N isotope labeling experiments showed that ammonia originated from nitrate reduction. 1H NMR spectroscopy and colorimetric methods were performed to quantify ammonia. In situ Raman and ex situ experiments revealed that CuO was electrochemically converted into Cu/Cu2O, which serves as an active phase. The combined results of online differential electrochemical mass spectrometry (DEMS) and DFT calculations demonstrated that the electron transfer from Cu2O to Cu at the interface could facilitate the formation of *NOH intermediate and suppress the hydrogen evolution reaction, leading to high selectivity and Faradaic efficiency.
Direct conversion of methane into methanol and other liquid oxygenates still confronts considerable challenges in activating the first C−H bond of methane and inhibiting overoxidation. Here, we report that ZnO loaded with appropriate cocatalysts (Pt, Pd, Au, or Ag) enables direct oxidation of methane to methanol and formaldehyde in water using only molecular oxygen as the oxidant under mild light irradiation at room temperature. Up to 250 micromoles of liquid oxygenates with ∼95% selectivity is achieved for 2 h over 10 mg of ZnO loaded with 0.1 wt % of Au. Experiments with isotopically labeled oxygen and water reveal that molecular O 2 , rather than water, is the source of oxygen for direct CH 4 oxidation. We find that ZnO and cocatalyst could concertedly activate CH 4 and O 2 into methyl radical and mildly oxidative intermediate (hydroperoxyl radical) in water, which are two key precursor intermediates for generating oxygenated liquid products in direct CH 4 oxidation. Our study underlines two equally significant aspects for realizing direct and selective photooxidation of CH 4 to liquid oxygenates, i.e., efficient C−H bond activation of CH 4 and controllable activation of O 2 .
Constructing atomically dispersed platinum (Pt) electrocatalysts is essential to build high-performance and costeffective electrochemical water-splitting systems. We present a novel strategy to realize the traction and stabilization of isolated Pt atoms in the nitrogen-containing porous carbon matrix (Pt@PCM). In comparison with the commercial Pt/C catalyst (20 weight %), the as-prepared Pt@PCM catalyst exhibits significantly boosted mass activity (up to 25 times) for hydrogen evolution reaction. Results of extended x-ray absorption fine structure investigation and density functional theory calculation suggest that the active sites are associated with the lattice-confined Pt centers and the activated carbon (C)/nitrogen (N) atoms at the adjacency of the isolated Pt centers. This strategy may provide insights into constructing highly efficient single-atom catalysts for different energy-related applications.
Graphitic carbon nitride (g‐C3N4) has recently emerged as an attractive photocatalyst for solar energy conversion. However, the photocatalytic activities of g‐C3N4 remain moderate because of the insufficient solar‐light absorption and the fast electron–hole recombination. Here, defect‐modified g‐C3N4 (DCN) photocatalysts, which are easily prepared under mild conditions and show much extended light absorption with band gaps decreased from 2.75 to 2.00 eV, are reported. More importantly, cyano terminal CN groups, acting as electron acceptors, are introduced into the DCN sheet edge, which endows the DCN with both n‐ and p‐type conductivities, consequently giving rise to the generation of p–n homojunctions. This homojunction structure is demonstrated to be highly efficient in charge transfer and separation, and results in a fivefold enhanced photocatalytic H2 evolution activity. The findings deepen the understanding on the defect‐related issues of g‐C3N4‐based materials. Additionally, the ability to build homojunction structures by the defect‐induced self‐functionalization presents a promising strategy to realize precise band engineering of g‐C3N4 and related polymer semiconductors for more efficient solar energy conversion applications.
Transition metal chalcogenides (TMCs) are efficient oxygen evolution reaction (OER) pre‐electrocatalysts, and will in situ transform into metal (oxy)hydroxides under OER condition. However, the role of chalcogen is not fully elucidated after oxidation and severe leaching. Here we present the vital promotion of surface‐adsorbed chalcogenates on the OER activity. Taking NiSe2 as an example, in situ Raman spectroscopy revealed the oxidation of Se‐Se to selenites (SeO32−) then to selenates (SeO42−). Combining the severe Se leaching and the strong signal of selenates, it is assumed that the selenates are rich on the surface and play significant roles. As expected, adding selenites to the electrolyte of Ni(OH)2 dramatically enhance its OER activity. And sulfates also exhibit the similar effect, suggesting the promotion of surface‐adsorbed chalcogenates on OER is universal. Our findings offer unique insight into the transformation mechanism of materials during electrolysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.