The urgent need of clean and renewable energy drives the exploration of effective strategies to produce molecular hydrogen. With the assistance of highly active non-noble metal electrocatalysts, electrolysis of water is becoming a promising candidate to generate pure hydrogen with low cost and high efficiency. Very recently, transition metal phosphides (TMPs) have been proven to be high performance catalysts with high activity, high stability, and nearly ∼100% Faradic efficiency in not only strong acidic solutions, but also in strong alkaline and neutral media for electrochemical hydrogen evolution. In this tutorial review, an overview of recent development of TMP nanomaterials as catalysts for hydrogen generation with high activity and stability is presented. The effects of phosphorus (P) on HER activity, and their synthetic methods of TMPs are briefly discussed. Then we will demonstrate the specific strategies to further improve the catalytic efficiency and stability of TMPs by structural engineering. Making use of TMPs as cocatalysts and catalysts in photochemical and photoelectrochemical water splitting is also discussed. Finally, some key challenges and issues which should not be ignored during the rapid development of TMPs are pointed out. These strategies and challenges of TMPs are instructive for designing other high-performance non-noble metal catalysts.
Metagenomics is expanding our knowledge of the gene content, functional significance, and genetic variability in natural microbial communities. Still, there exists limited information concerning the regulation and dynamics of genes in the environment. We report here global analysis of expressed genes in a naturally occurring microbial community. We first adapted RNA amplification technologies to produce large amounts of cDNA from small quantities of total microbial community RNA. The fidelity of the RNA amplification procedure was validated with Prochlorococcus cultures and then applied to a microbial assemblage collected in the oligotrophic Pacific Ocean. Microbial community cDNAs were analyzed by pyrosequencing and compared with microbial community genomic DNA sequences determined from the same sample. Pyrosequencingbased estimates of microbial community gene expression compared favorably to independent assessments of individual gene expression using quantitative PCR. Genes associated with key metabolic pathways in open ocean microbial species-including genes involved in photosynthesis, carbon fixation, and nitrogen acquisition-and a number of genes encoding hypothetical proteins were highly represented in the cDNA pool. Genes present in the variable regions of Prochlorococcus genomes were among the most highly expressed, suggesting these encode proteins central to cellular processes in specific genotypes. Although many transcripts detected were highly similar to genes previously detected in ocean metagenomic surveys, a significant fraction (Ϸ50%) were unique. Thus, microbial community transcriptomic analyses revealed not only indigenous gene-and taxon-specific expression patterns but also gene categories undetected in previous DNA-based metagenomic surveys.bacterial communities ͉ metagenomics ͉ metatranscriptomics ͉ marine ͉ cDNA
Marine dissolved organic matter (DOM) contains as much carbon as the Earth's atmosphere, and represents a critical component of the global carbon cycle. To better define microbial processes and activities associated with marine DOM cycling, we analyzed genomic and transcriptional responses of microbial communities to high-molecularweight DOM (HMWDOM) addition. The cell density in the unamended control remained constant, with very few transcript categories exhibiting significant differences over time. In contrast, the DOM-amended microcosm doubled in cell numbers over 27 h, and a variety of HMWDOM-stimulated transcripts from different taxa were observed at all time points measured relative to the control. Transcripts significantly enriched in the HMWDOM treatment included those associated with two-component sensor systems, phosphate and nitrogen assimilation, chemotaxis, and motility. Transcripts from Idiomarina and Alteromonas spp., the most highly represented taxa at the early time points, included those encoding TonB-associated transporters, nitrogen assimilation genes, fatty acid catabolism genes, and TCA cycle enzymes. At the final time point, Methylophaga rRNA and non-rRNA transcripts dominated the HMWDOM-amended microcosm, and included gene transcripts associated with both assimilatory and dissimilatory single-carbon compound utilization. The data indicated specific resource partitioning of DOM by different bacterial species, which results in a temporal succession of taxa, metabolic pathways, and chemical transformations associated with HMWDOM turnover. These findings suggest that coordinated, cooperative activities of a variety of bacterial "specialists" may be critical in the cycling of marine DOM, emphasizing the importance of microbial community dynamics in the global carbon cycle.icrobial activities drive most of Earth's biogeochemical cycles. Many processes and players involved in these planetary cycles, however, remain largely uncharacterized, due to the inherent complexity of microbial community processes in the environment. Cycling of organic carbon in ocean surface waters is no exception. Though marine dissolved organic matter (DOM) is one of the largest reservoirs of organic carbon on the planet (1), microbial activities that regulate DOM turnover remain poorly resolved (2).Marine DOM is an important substrate for heterotrophic bacterioplankton, which efficiently remineralize as much as 50% of total primary productivity through the microbial loop (3-6). Though some DOM is remineralized on short timescales of minutes to hours, a significant fraction escapes rapid removal. In marine surface waters, this semilabile DOM transiently accumulates to concentrations 2-3 times greater than are found in the deep sea (7), and represents a large inventory of dissolved carbon and nutrients that are potential substrates for marine microbes. Timeseries analyses of semilabile DOM accumulation in temperate and subtropical upper ocean gyres show an annual cycle in DOC inventory with net accumulation following the ...
The development of electrocatalysts to generate hydrogen, with good activity and stability, is a great challenge in the fields of chemistry and energy. Here we demonstrate a "hitting three birds with one stone" method to synthesize less toxic metallic WO2-carbon mesoporous nanowires with high concentration of oxygen vacancies (OVs) via calcination of inorganic/organic WO3-ethylenediamine hybrid precursors. The products exhibit excellent performance for H2 generation: the onset overpotential is only 35 mV, the required overpotentials for 10 and 20 mA/cm(2) are 58 and 78 mV, the Tafel slope is 46 mV/decade, the exchange current density is 0.64 mA/cm(2), and the stability is over 10 h. Further studies, in combination with density functional theory, demonstrate that the unusual electronic structure and the large amount of active sites, generated by the high concentration of OVs, as well as the closely attached carbon materials, were key factors for excellent performance. Our results experimentally and theoretically establish metallic transition metal oxides (TMOs) as intriguing novel electrocatalysts for H2 generation. Such TMOs with OVs might be promising candidates for other energy storage and conversion applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.