The beneficial effect of magnesium oxide upon the performance of crack-resistant oxide glasses has been explored in a series of aluminoborosilicate glasses with the compositions 60SiO2–(20 – x)Al2O3–xB2O3–20Na2O and 60SiO2–(20 – x)Al2O3–xB2O3–10Na2O–10MgO. The simultaneous presence of both boron and aluminum oxides in these glasses produces a synergetic effect upon crack resistance (CR), whose structural origins are being explored by detailed 11B, 23Na, 27Al, and 29Si single and double resonance solid-state NMR studies. Aluminum is exclusively four-coordinated, whereas boron is found in both three- and four-coordination. Substitution of B2O3 with Al2O3 and Na2O with MgO leads to a dramatic reduction of N 4, the fraction of four-coordinate boron, accompanied by an increase in CR. 11B/27Al double resonance NMR studies show only weak interactions between the boron oxide and aluminum oxide components, giving no evidence of the formation of new structural units not already realized in the ternary aluminosilicate and borosilicate glass systems. Rather, the effect of magnesium can be related to a dramatic reduction of the fraction of four-coordinate boron species compared to the analogous sodium-based system. This reduction results from a preference of the sodium ions to charge-compensate anionic AlO4/2 – species, combined with an unfavorable interaction of four-coordinate boron with Mg2+. Overall, the results give important insights into the Mg-driven structural network changes in this four-component glass system, providing a structural rationale for the dramatic effect of magnesium upon the mechanical properties of these glasses.
The effect of the average ionic potential ξ = Ze/r of the network modifier cations on crack initiation resistance (CR) and Young's modulus E has been measured for a series of alkaline‐earth aluminoborosilicate glasses with the compositions 60SiO2–10Al2O3–10B2O3–(20−x)M(2)O–xM’O (0 ≤ x ≤ 20; M, M’ = Mg, Ca, Sr, Ba, Na). Systematic trends indicating an increase of CR with increasing ionic potential, ξ, have been correlated with structural properties deduced from the NMR interaction parameters in 29Si, 27Al, 23Na, and 11B solid state NMR. 27Al NMR spectra indicate that the aluminum atoms in these glasses are essentially all four‐coordinated, however, the average quadrupolar coupling constant
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.