A general analytical model of materials flow analysis (MFA) incorporating physical waste input‐output is proposed that is fully consistent with the mass balance principle. Exploiting the triangular nature of the matrix of input coefficients, which is obtained by rearranging the ordering of sectors according to degrees of fabrication, the material composition matrix is derived, which gives the material composition of products. A formal mathematical definition of materials (or the objects, the flow of which is to be accounted for by MFA) is also introduced, which excludes the occurrence of double accounting in economy‐wide MFAs involving diverse inputs. By using the model, monetary input‐output (IO) tables can easily be converted into a physical material flow account (or physical input‐output tables [PIOT]) of an arbitrary number of materials, and the material composition of a product can be decomposed into its input origin. The first point represents substantial saving in the otherwise prohibitive cost that is associated with independent compilation of PIOT. The proposed methodology is applied to Japanese IO data for the flow of 11 base metals and their scrap (available as e‐supplement on the JIE Web site).
SummaryAlloying elements in steel add a wide range of valuable properties to steel materials that are indispensable for the global economy. However, they are likely to be effectively irretrievably blended into the steel when recycled because of (among other issues) the lack of information about the composition of the scrap. This results in the alloying elements dissipating in slag during steelmaking and/or becoming contaminants in secondary steel. We used the waste input-output material flow analysis model to quantify the unintentional flows of alloying elements (i.e., chromium, nickel, and molybdenum) that occur in steel materials and that result from mixing during end-of-life (EOL) processes. The model can be used to predict in detail the flows of ferrous materials in various phases, including the recycling phase by extending steel, alloying element source, and iron and steel scrap sectors. Application of the model to Japanese data indicates the critical importance of the recycling of EOL vehicles (ELVs) in Japan because passenger cars are the final destination of the largest share of these alloying elements. However, the contents of alloying elements are rarely considered in current ELV recycling. Consequently, the present study demonstrates that considerable amounts of alloying elements, which correspond to 7% to 8% of the annual consumption in electric arc furnace (EAF) steelmaking, are unintentionally introduced into EAFs. This result suggests the importance of quality-based scrap recycling for efficient management of alloying elements.
OVERVIEW OF THE LARGE HELICAL DEVICE PROJECT. The Large Helical Device (LHD) has successfully started running plasma confinement experiments after a long construction period of eight years. During the construction and machine commissioning phases, a variety of milestones were attained in fusion engineering which successfully led to the first operation, and the first plasma was ignited on 31 March 1998. Two experimental campaigns are planned in 1998. In the first campaign, the magnetic flux mapping clearly demonstrated a nested structure of magnetic surfaces. The first plasma experiments were conducted with second harmonic 84 and 82.6 GHz ECH at a heating power input of 0.35 MW. The magnetic field was set at 1.5 T in these campaigns so as to accumulate operational experience with the superconducting coils. In the second campaign, auxiliary heating with NBI at 3 MW has been carried out. Averaged electron densities of up to 6 × 10 19 m-3 , central temperatures ranging from 1.4 IAEA-F1-CN-69/OV1/4 2 to 1.5 keV and stored energies of up to 0.22 MJ have been attained despite the fact that the impurity level has not yet been minimized. The obtained scarling of energy confinement time has been found to be consistent with the ISS95 scaling law with some enhancement.
Steel is not elemental iron but rather a group of iron-based alloys containing many elements, especially chromium, nickel, and molybdenum. Steel recycling is expected to promote efficient resource use. However, open-loop recycling of steel could result in quality loss of nickel and molybdenum and/or material loss of chromium. Knowledge about alloying element substance flow is needed to avoid such losses. Material flow analyses (MFAs) indicate the importance of steel recycling to recovery of alloying elements. Flows of nickel, chromium, and molybdenum are interconnected, but MFAs have paid little attention to the interconnected flow of materials/substances in supply chains. This study combined a waste input-output material flow model and physical unit input-output analysis to perform a simultaneous MFA for nickel, chromium, and molybdenum in the Japanese economy in 2000. Results indicated the importance of recovery of these elements in recycling policies for end-of-life (EoL) vehicles and constructions. Improvement in EoL sorting technologies and implementation of designs for recycling/disassembly at the manufacturing phase are needed. Possible solutions include development of sorting processes for steel scrap and introduction of easier methods for identifying the composition of secondary resources. Recovery of steel scrap with a high alloy content will reduce primary inputs of alloying elements and contribute to more efficient resource use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.