At present, many industrial carrier devices utilize linear motor sliders. However, a heavier load requires a linear motor (which is an example of a direct drive device) to get higher power, compared with a rotary motor with a ball screw slider (which is an example of an indirect drive device). In order to obtain higher power at a lower cost, a linear slider with multiple motors can be utilized, for example, a gantry type linear motor slider. Moving the gantry type slider requires two linear motors that are set up in parallel to enable synchronization control. Some conventional synchronization control methods have been proposed for the parallel twin linear slider; however, a large-scaled gantry type linear motor slider has two unique problems: mechanical distortion caused by the limitations of installation environment and coupling caused by joints with low stiffness. This paper proposes a control model to solve these problems, and an identification method of each parameter. Furthermore, the effectiveness of the control model is verified by comparison with simulation results and experimental results. C⃝ 2018 Wiley Periodicals, Inc. Electr Eng Jpn, 203(2): 39-46, 2018; Published online in Wiley Online Library (wileyonlinelibrary.com).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.