Nociceptive neuronal circuits are formed during embryonic and postnatal times when painful stimuli are normally absent or limited. Today, medical procedures for neonates with health risks can involve tissue injury and pain for which the long-term effects are unknown. To investigate the impact of neonatal tissue injury and pain on development of nociceptive neuronal circuitry, we used an animal model of persistent hind paw peripheral inflammation. We found that, as adults, these animals exhibited spinal neuronal circuits with increased input and segmental changes in nociceptive primary afferent axons and altered responses to sensory stimulation.
Alteration in the intracellular signal transduction pathway in primary afferent neurons may contribute to pain hypersensitivity. We demonstrated that very rapid phosphorylation of extracellular signal-regulated protein kinases (pERK) occurred in DRG neurons that were taking part in the transmission of various noxious signals. The electrical stimulation of Adelta fibers induced pERK primarily in neurons with myelinated fibers. c-Fiber activation by capsaicin injection induced pERK in small neurons with unmyelinated fibers containing vanilloid receptor-1 (VR-1), suggesting that pERK labeling in DRG neurons is modality specific. Electrical stimulation at the c-fiber level with different intensities and frequencies revealed that phosphorylation of ERK is dependent on the frequency. We examined the pERK in the DRG after application of natural noxious stimuli and found a stimulus intensity-dependent increase in labeled cell size and in the number of activated neurons in the c- and Adelta-fiber population. Immunohistochemical double labeling with phosphorylated ERK/VR-1 and pharmacological study demonstrated that noxious heat stimulation induced pERK in primary afferents in a VR-1-dependent manner. Capsaicin injection into the skin also increased pERK labeling significantly in peripheral fibers and terminals in the skin, which was prevented by a mitogen-activated protein kinase/ERK kinase inhibitor, 1,4-diamino-2,3-dicyano-1,4-bis(2-aminopheylthio)butadiene (U0126). Behavioral experiments showed that U0126 dose-dependently attenuated thermal hyperalgesia after capsaicin injection and suggested that the activation of ERK pathways in primary afferent neurons is involved in the sensitization of primary afferent neurons. Thus, pERK in primary afferents by noxious stimulation in vivo showed distinct characteristics of expression and may be correlated with the functional activity of primary afferent neurons.
To investigate the intracellular signal transduction pathways involved in regulating the gene expression of brain-derived neurotrophic factor (BDNF) in primary afferent neurons, we examined the activation of extracellular signal-regulated protein kinase (ERK) in dorsal root ganglion (DRG) neurons after peripheral inflammation and sciatic nerve transection. Peripheral inflammation induced an increase in the phosphorylation of ERK, mainly in tyrosine kinase A-containing small-to-medium-diameter DRG neurons. The treatment of the mitogen-activated protein kinase (MAPK) kinase 1/2 inhibitor U0126 reversed the pain hypersensitivity and the increase in phosphorylated-ERK (p-ERK) and BDNF in DRG neurons induced by complete Freund's adjuvant. On the other hand, axotomy induced the activation of ERK mainly in medium-and large-sized DRG neurons and in satellite glial cells. U0126 suppressed the axotomy-induced autotomy behavior and reversed the increase in p-ERK and BDNF. The intrathecal application of nerve growth factor (NGF) induced an increase in the number of p-ERK-and BDNF-labeled cells, mainly small neurons, and the application of anti-NGF induced an increase in p-ERK and BDNF in some medium-to-large-diameter DRG neurons. The activation of MAPK in the primary afferents may occur in different populations of DRG neurons after peripheral inflammation and axotomy, respectively, through alterations in the target-derived NGF. These changes, including the changes in BDNF expression, might be involved in the pathophysiological changes in primary afferent neurons.
We investigated the expression of two candidate transducers of noxious stimuli in peripheral tissues, the vanilloid receptor subtype 1 (VR1) and the P2X(3), a subunit of the ionotropic P2X receptor for ATP, in spared L4 DRG neurons following L5 spinal nerve ligation, a neuropathic pain model. VR1 mRNA expression increased in the small- and medium-sized DRG neurons from the first to 28th day after injury, and this up-regulation corresponded well with the development and maintenance of thermal hyperalgesia of the hind paw. The increase in VR1-immunoreactive (ir) neurons was confirmed at the third day after surgery. In contrast, there was no change in expression of P2X(3) mRNA over 4 weeks after ligation, or in the percentage of P2X(3)-ir neurons observed 3 days after surgery. Our data suggests that increased VR1 in the spared L4 DRG may contribute to the exaggerated heat response observed in this neuropathic pain model. Taken together with the previous reports that P2X(3) expression increases in the spared DRG neurons in other neuropathic pain models, there appears to be differences in the phenotypic changes and pathomechanisms of the various neuropathic pain models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.