Receptors for most interleukins and cytokines that regulate immune and hematopoietic systems belong to the class I cytokine receptor family. These molecules form multichain receptor complexes in order to exhibit high-affinity binding to, and mediate biological functions of, their respective cytokines. In most cases, these functional receptor complexes share common signal transducing receptor components that are also in the class I cytokine receptor family, i.e. gp130, common beta, and common gamma molecules. Interleukin-6 and related cytokines, interleukin-11, leukemia inhibitory factor, oncostatin M, ciliary neurotrophic factor, and cardiotrophin-1 are all pleiotropic and exhibit overlapping biological functions. Functional receptor complexes for this interleukin-6 family of cytokines share gp130 as a component critical for signal transduction. Unlike cytokines sharing common beta and common gamma chains that mainly function in hematopoietic and lymphoid cell systems, the interleukin-6 family of cytokines function extensively outside these systems as well, e.g. from the cardiovascular to the nervous system, owing to ubiquitously expressed gp130. Stimulation of cells with the interleukin-6 family of cytokines triggers homo- or hetero-dimerization of gp130. Although gp130 and its dimer partners possess no intrinsic tyrosine kinase domain, the dimerization of gp130 leads to activation of associated cytoplasmic tyrosine kinases and subsequent modification of transcription factors. This paper reviews recent progress in the study of the interleukin-6 family of cytokines and gp130.
The signalling pathway that comprises JAK kinases and STAT proteins (for signal transducer and activator of transcription) is important for relaying signals from various cytokines outside the cell to the inside. The feedback mechanism responsible for switching off the cytokine signal has not been elucidated. We now report the cloning and characterization of an inhibitor of STAT activation which we name SSI-1 (for STAT-induced STAT inhibitor-1). We found that SSI-1 messenger RNA was induced by the cytokines interleukins 4 and 6 (IL-4, IL-6), leukaemia-inhibitory factor (LIF), and granulocyte colony-stimulating factor (G-CSF). Stimulation by IL-6 or LIF of murine myeloid leukaemia cells (M1 cells) induced SSI-1 mRNA expression which was blocked by transfection of a dominant-negative mutant of Stat3, indicating that the SSI-1 gene is a target of Stat3. Forced overexpression of SSI-1 complementary DNA interfered with IL-6- and LIF-mediated apoptosis and macrophage differentiation of M1 cells, as well as IL-6 induced tyrosine-phosphorylation of a receptor glycoprotein component, gp130, and of Stat3. When SSI-1 is overexpressed in COS7 cells, it can associate with the kinases Jak2 and Tyk2. These findings indicate that SSI-1 is responsible for negative-feedback regulation of the JAK-STAT pathway induced by cytokine stimulation.
Both stem cells and cancer cells are thought to be capable of unlimited proliferation. Paradoxically, however, some cancers seem to contain stem-like cells (cancer stem cells). To help resolve this paradox, we investigated whether established malignant cell lines, which have been maintained for years in culture, contain a subpopulation of stem cells. In this article, we show that many cancer cell lines contain a small side population (SP), which, in many normal tissues, is thought to contain the stem cells of the tissue. We demonstrate that in the absence of serum the combination of basic fibroblast growth factor and platelet-derived growth factor maintains SP cells in the C6 glioma cell line. Moreover, we show that C6 SP cells, but not non-SP cells, can generate both SP and non-SP cells in culture and are largely responsible for the in vivo malignancy of this cell line. Finally, we provide evidence that C6 SP cells can produce both neurons and glial cells in vitro and in vivo. We propose that many cancer cell lines contain a minor subpopulation of stem cells that is enriched in an SP, can be maintained indefinitely in culture, and is crucial for their malignancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.