The Wilms' tumor gene WT1 is overexpressed in leukemias and various types of solid tumors, and the WT1 protein was demonstrated to be an attractive target antigen for immunotherapy against these malignancies. Here, we report the outcome of a phase I clinical study of WT1 peptide-based immunotherapy for patients with breast or lung cancer, myelodysplastic syndrome, or acute myeloid leukemia. The WT1 gene was isolated as a gene responsible for Wilms' tumor, a pediatric renal cancer, and encodes a zinc finger transcription factor, which is involved in cell proliferation and differentiation, apoptosis, and organ development (3-6). Although the WT1 gene was first categorized as a tumor suppressor gene, we have proposed that the wild-type WT1 gene functions as an oncogene rather than a tumor-suppressor gene on the basis of the following findings. The first is high expression of the wild-type WT1 gene in both leukemias and solid tumors (7-18), the second is growth inhibition of leukemic and solid tumor cells by treatment with WT1 antisense oligomers (14,19), and the third is block of differentiation, but induction of proliferation, of wild-type WT1 gene-transfected myeloid progenitor cells in response to granulocyte colony-stimulating factor (20, 21). The last two are block of thymocyte differentiation but induction of thymocyte proliferation in the transgenic mice with the lck promoter-driven WT1 gene (22), and WT1 gene expression in the majority of dimethylbenzanthracene-induced erythroblastic leukemia and a stronger tendency of the cells with high levels of WT1 to develop into leukemias (23).Expression of the wild-type WT1 gene has been found in most cases of acute myelocytic leukemia (AML), acute lymphocytic leukemia, chronic myelocytic leukemia, and myelodysplastic syndrome (MDS) at higher levels than those in normal bone marrow (BM) or peripheral blood (7-13). Furthermore, various types of solid tumors, including lung, breast, thyroid, and colorectal cancers, expressed the wild-type WT1 gene at higher levels compared to those in corresponding normal tissues (15-18). These results indicated that the wild-type WT1 gene product may be a promising target for cancer immunotherapy (24,25).We tested the potential of the WT1 gene product to serve as a target antigen for tumor-specific immunotherapy. Human WT1-specific CTLs have been found to induce lysis of endogenously WT1-expressing tumor cells in vitro, but not to cause damage to physiologically WT1-expressing normal cells (24,(26)(27)(28). We used a mouse in vivo system to demonstrate that immunization of mice with either MHC class I-restricted WT1 peptide or WT1 cDNA induced WT1-specific CTLs. We also showed that the immunized mice rejected challenges of WT1-expressing tumor cells, whereas the induced CTLs did not affect normal healthy tissues that physiologically expressed WT1 nor damaged the normal tissues (25, 29). These results indicated that the WT1 protein could be a novel tumor rejection antigen for cancer immunotherapy (24)(25)(26)(27)(28)(29)(30)(31)(32).In...