Periodontal disease is predominantly caused by the pathogenic bacterium Porphyromonas gingivalis that produces inflammation-inducing factors in the host. Eucommia ulmoides is a plant native to China that has been reported to reduce blood pressure, promote weight loss, and exhibit anti-inflammatory effects. Geniposidic acid (GPA) is the major component of E. ulmoides. Herein, we investigated the effects of GPA on P. gingivalis-induced periodontitis by measuring the inflammatory responses in human gingival epithelial cells (HGECs) after P. gingivalis stimulation and GPA addition in a P. gingivalis-induced periodontitis mouse model. We found that GPA addition suppressed interleukin (IL)-6 mRNA induction (33.8% suppression), IL-6 production (69.2% suppression), toll-like receptor (TLR) 2 induction, and mitogen-activated protein kinase (MAPK) phosphorylation in HGECs stimulated by P. gingivalis. Inoculation of mice with GPA inhibited P. gingivalis-induced alveolar bone resorption (25.6% suppression) by suppressing IL-6 and TLR2 production in the serum and gingiva. GPA suppressed osteoclast differentiation of bone marrow cells induced by M-CSF and sRANKL in mice (56.7% suppression). GPA also suppressed the mRNA expression of OSCAR, NFATc1, c-Fos, cathepsin K, and DC-STAMP. In summary, GPA exerts an anti-inflammatory effect on periodontal tissue and may be effective in preventing periodontal disease.
Cerebral hemorrhage severely affects the daily life of affected individuals. Streptococcus mutans and its adhesion factor Cnm increase the adverse effects of cerebral hemorrhages. However, the mechanism by which Cnm-positive bacteria migrate from apical lesions to cerebral hemorrhage sites is unclear. Therefore, we established an S. mutans-infected apical lesion in a rat model of hypertension and investigated the neurological symptoms associated with cerebral hemorrhage. Eighteen twelve-week-old stroke-prone spontaneously hypertensive rats were randomly divided into three groups, i.e., the no infection (control), dental infection with S. mutans KSM153 wild-type (Cnm-positive), and KSM153 Δcnm groups. Immunofluorescent staining was performed to visualize S. mutans protein. Serum interleukin-1β levels were measured. The adhesion of S. mutans to the extracellular matrix and human fibroblast cells was also analyzed. Serum antibody titers against S. mutans were comparable between Cnm-positive and knockout mutants. However, 3–10 days post-infection, neurological symptom scores and cerebral hemorrhage scores were higher in Cnm-positive rats than in knockout mutants. The localization of S. mutans-derived protein was observed in the vicinity of disrupted blood vessels. Serum interleukin-1β levels significantly increased post-KSM153 WT infection. Cnm-positive S. mutans clinical isolates showed increased adhesion to the extracellular matrix, human dental pulp cells, and human umbilical vein endothelial cells compared to the Cnm-negative S. mutans isolates. In conclusion, Cnm-positive bacteria colonize the apical lesion site using the extracellular matrix as a foothold and affect cerebral hemorrhage via the bloodstream.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.