[3]-Radialene-based dopant CN6-CP studied herein, with its reduction potential of +0.8 versus Fc/Fc+ and the lowest unoccupied molecular orbital level of -5.87 eV, is the strongest molecular p-dopant reported in the open literature, so far. The efficient p-doping of the donor-acceptor dithienyl-diketopyrrolopyrrole-based copolymer having the highest unoccupied molecular orbital level of -5.49 eV is achieved. The doped films exhibit electrical conductivities up to 70 S cm(-1) .
Herein, we present a new paradigm in the engineering of nanostructured hybrids between conjugated polymer and inorganic materials via a chain-growth surface-initiated Kumada catalyst-transfer polycondensation (SI-KCTP) from particles. Poly(3-hexylthiophene), P3HT, a benchmark material for organic electronics, was selectively grown by SI-KCTP from (nano)particles bearing surface-immobilized Ni catalysts supported by bidentate phosphorus ligands, that resulted in hairy (nano)particles with end-tethered P3HT chains. Densely grafted P3HT chains exhibit strongly altered optical properties compared to the untethered counterparts (red shift and vibronic fine structure in absorption and fluorescence spectra), as a result of efficient planarization and chain-aggregation. These effects are observed in solvents that are normally recognized as good solvents for P3HT (e.g., tetrahydrofurane). We attribute this to strong interchain interactions within densely grafted P3HT chains, which can be tuned by changing the surface curvature (or size) of the supporting particle. The hairy P3HT nanoparticles were successfully applied in bulk heterojunction solar cells.
Synthesis.2-Bromo-3-hexyl-5-iodothiophene (6). NBS (37.38g, 0.21 mol) was added to the solution of 3hexylthiophene (33.66 g, 0.2 mol) in 500 mL of a chloroform-acetic acid mixture (50/50 v/v) in the absence of light, under an argon atmosphere, at temperature 0°C. The mixture was allowed to reach room temperature, and stirred overnight, and hydrolyzed with 500 mL of ice-water, and the aqueous phase extracted with chloroform. The combined extracts were washed with water, 1 M sodium hydroxide solution (50 ml), again with water, dried (MgSO4), and concentrated. The residue was purified by flash chromatography to give 44.45 g (0.18 mol) of monobromide 4 (90% yield). Iodination was performed in a similar manner. To this end, NIS (21.26 g, 95 mmol) was added to 4 (22.25 g, 90 mmol) in 500 mL of a chloroform-acetic acid mixture (50/50 v/v) in the absence of light, under an argon atmosphere, at temperature 0°C. The mixture was allowed to reach room temperature, stirred overnight,
Herein we present a molecular doping of a high mobility diketopyrrolopyrrole−dithienylthieno[3,2-b]thiophene donor−acceptor copolymer poly[3,6-thiophene], PDPP(6-DO) 2 TT, with the electron-deficient compound hexafluorotetracyanonaphthoquinodimethane (F6TCNNQ). Despite a slightly negative HOMO donor −LUMO acceptor offset of −0.12 eV which may suggest a reduced driving force for the charge transfer (CT), a partial charge CT was experimentally observed in PDPP(6-DO) 2 TT:F6TCNNQ by absorption, vibrational, and electron paramagnetic resonance spectroscopies and predicted by density functional theory calculations. Despite the modest CT, PDPP(6-DO) 2 TT:F6TCNNQ films possess unexpectedly high conductivities up to 2 S/cm (comparable with the conductivities of the benchmark doped polymer system P3HT:F4TCNQ having a large positive offset). The observation of the high conductivity in doped PDPP(6-DO) 2 TT films can be explained by a high hole mobility in PDPP(6-DO) 2 TT blends which compensates a lowered (relatively to P3HT:F4TCNQ) concentration of free charge carriers. We also show that F6TCNNQ-doped P3HT, the system which has not been reported so far to the best of our knowledge, exhibits a conductivity up to 7 S/cm, which exceeds the conductivity of the benchmark P3HT:F4TCNQ system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.