Epoxy-diane oligomer ED-20, hardener polyethylene polyamine, and micro dispersed particles of iron-carbide mixture synthesized by high-voltage electric discharge have been used for the formation of Composite Materials (CMs) and protective coatings for the transport industry. The dependence of the adhesive, physical, and mechanical properties and residual stresses of epoxy composites on the content of micro dispersed powders has been studied in this paper. It has been proved that for the formation of a composite material or protective coating with improved adhesion and cohesion properties, the optimal content of particles is 0.5 wt.% per 100 wt.% of epoxy oligomer ED-20. Such materials are characterized by increased mechanical strength and the ability to resist static and shock loads, as their properties are significantly increased. The obtained results of the experimental studies of the physical and mechanical properties of composite materials correlate with the studied results of adhesive characteristics, which indicate their veracity.
It is proved that in order to increase the operational characteristics of parts of the river and sea transport, including their physical and mechanical properties, it is advisable to use the protective polymeric composite coatings.
The effect of fillers on the flexural stresses of the developed epoxy composite was analyzed. The critical content of components was determined by the method of mathematical planning of the experiment: the synthesized powder mixture - 0.05 pts.wt., discrete fibers - 0.10 to 0.15 pts.wt. per 100 pts.wt. of epoxy oligomer ED-20. Introduction of such ingredients into the epoxy binder allows to increase the flexural stresses to σ f=77.4…78.6 MPa. The obtained results allow to create materials with improved values of physical and mechanical properties.
The perspectives of using new modified polymer-based materials for the restoration of vehicle parts are substantiated in this article. The use of binders based on epoxy diane oligomers is proved to be promising in the formation of anti-corrosion coatings. To improve the properties of epoxy matrices at the preliminary stage of their formation, active additives are introduced. The use of a phthalimide modifier, which contains functional groups active before interfacial interaction, is proved to be promising as well. An epoxy diane oligomer is selected as the binder‘s main component in the formation of composites. The hardener polyethylene polyamine is used for crosslinking the epoxy compositions. It allows to harden materials at room temperatures. The choice of a phthalimide modifier for the improvement of thermophysical properties of the developed materials is substanciated. Heat resistance (according to Martens), glass transition temperature and thermal coefficient of linear expansion of modified epoxy composites are studied. To form a composite material or protective coating with improved thermophysical properties, the modifier phthalimide in the amount of q = 0.25… 0.50 pts. wt. at q = 100 pts. wt. of epoxy oligomer ED-20 should be introduced into the epoxy binder. Based on the tests of thermophysical properties of phthalimide-modified materials, the allowable temperature limits, at which it is possible to use the developed composites, are found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.