SummaryMany microorganisms produce molecules having antibiotic activity and expel them into the environment, presumably enhancing their ability to compete with their neighbours. Given that these molecules are often toxic to the producer, mechanisms must exist to ensure that the assembly of the export apparatus accompanies or precedes biosynthesis. Streptomyces coelicolor produces the polyketide antibiotic actinorhodin in a multistep pathway involving enzymes encoded by genes that are clustered together. Embedded within the cluster are genes for actinorhodin export, two of which, actR and actA resemble the classic tetR and tetA repressor/efflux pump-encoding gene pairs that confer resistance to tetracycline. Like TetR, which represses tetA, ActR is a repressor of actA. We have identified several molecules that can relieve repression by ActR. Importantly (S)-DNPA (an intermediate in the actinorhodin biosynthetic pathway) and kalafungin (a molecule related to the intermediate dihydrokalafungin), are especially potent ActR ligands. This suggests that along with the mature antibiotic(s), intermediates in the biosynthetic pathway might activate expression of the export genes thereby coupling export to biosynthesis. We suggest that this could be a common feature in the production of many bioactive natural products.
We recently established that the elastin-binding protein, which is identical to the spliced variant of -galactosidase, forms a cell surface-targeted complex with two proteins considered "classic lysosomal enzymes": protective protein/cathepsin A and neuraminidase-1 (Neu1). We also found that cell surface-residing Neu1 can desialylate neighboring microfibrillar glycoproteins and facilitate the deposition of insoluble elastin, which contributes to the maintenance of cellular quiescence. Here we provide evidence that cell surfaceresiding Neu1 contributes to a novel mechanism that limits cellular proliferation by desialylating cell membrane-residing sialoglycoproteins that directly propagate mitogenic signals. We demonstrated that treatment of cultured human aortic smooth muscle cells (SMCs) with either a sialidase inhibitor or an antibody that blocks Neu1 activity induced significant up-regulation in SMC proliferation in response to fetal bovine serum. Conversely, treatment with Clostridium perfringens neuraminidase (which is highly homologous to Neu1) decreased SMC proliferation, even in cultures that did not deposit elastin. Further, we found that pretreatment of aortic SMCs with exogenous neuraminidase abolished their mitogenic responses to recombinant platelet-derived growth factor (PDGF)-BB and insulin-like growth factor (IGF)-2 and that sialidosis fibroblasts (which are exclusively deficient in Neu1) were more responsive to PDGF-BB and IGF-2 compared with normal fibroblasts. Furthermore , we provide direct evidence that neuraminidase caused the desialylation of both PDGF and IGF-1 receptors and diminished the intracellular signals induced by the mitogenic ligands
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.