Six DNA regions were evaluated as potential DNA barcodes for Fungi, the second largest kingdom of eukaryotic life, by a multinational, multilaboratory consortium. The region of the mitochondrial cytochrome c oxidase subunit 1 used as the animal barcode was excluded as a potential marker, because it is difficult to amplify in fungi, often includes large introns, and can be insufficiently variable. Three subunits from the nuclear ribosomal RNA cistron were compared together with regions of three representative proteincoding genes (largest subunit of RNA polymerase II, second largest subunit of RNA polymerase II, and minichromosome maintenance protein). Although the protein-coding gene regions often had a higher percent of correct identification compared with ribosomal markers, low PCR amplification and sequencing success eliminated them as candidates for a universal fungal barcode. Among the regions of the ribosomal cistron, the internal transcribed spacer (ITS) region has the highest probability of successful identification for the broadest range of fungi, with the most clearly defined barcode gap between inter-and intraspecific variation. The nuclear ribosomal large subunit, a popular phylogenetic marker in certain groups, had superior species resolution in some taxonomic groups, such as the early diverging lineages and the ascomycete yeasts, but was otherwise slightly inferior to the ITS. The nuclear ribosomal small subunit has poor species-level resolution in fungi. ITS will be formally proposed for adoption as the primary fungal barcode marker to the Consortium for the Barcode of Life, with the possibility that supplementary barcodes may be developed for particular narrowly circumscribed taxonomic groups.DNA barcoding | fungal biodiversity T he absence of a universally accepted DNA barcode for Fungi, the second most speciose eukaryotic kingdom (1, 2), is a serious limitation for multitaxon ecological and biodiversity studies. DNA barcoding uses standardized 500-to 800-bp sequences to identify species of all eukaryotic kingdoms using primers that are applicable for the broadest possible taxonomic group. Reference barcodes must be derived from expertly identified vouchers deposited in biological collections with online metadata and validated by available online sequence chromatograms. Interspecific variation should exceed intraspecific variation (the barcode gap), and barcoding is optimal when a sequence is constant and unique to one species (3, 4). Ideally, the barcode locus would be the same for all kingdoms. A region of the mitochondrial gene encoding the cytochrome c oxidase subunit 1 (CO1) is the barcode for animals (3, 4) and the default marker adopted by the Consortium for the Barcode of Life for all groups of organisms, including fungi (5). In Oomycota, part of the kingdom Stramenopila historically studied by mycologists, the de facto barcode internal transcribed spacer (ITS) region is suitable for identification, but the default CO1 marker is more reliable in a few clades of closely related species (6)...
Cryptococcus gattii causes life-threatening infection of the pulmonary and central nervous systems in hosts with normal immunity and traditionally has been considered to be restricted geographically to tropical and subtropical climates. The recent outbreak of C. gattii in the temperate climate of Vancouver Island, BC, Canada, led to a collaborative investigation. The objectives of the current study were to ascertain the environmental source of the outbreak infections, survey the molecular types of the outbreak and environmental cryptococcal isolates, and determine the extent of genetic diversity among the isolates. PCR-fingerprinting and amplified fragment length polymorphism (AFLP) were used to examine the genotypes, and mating assays were performed to determine the mating type of the isolates. All outbreak and environmental isolates belonged to C. gattii. Concordant results were obtained by using PCR-fingerprinting and AFLP analysis. The vast majority of clinical and veterinary infections were caused by isolates of the molecular type VGII͞AFLP6, but two were caused by molecular type VGI͞AFLP4. All environmental isolates belonged to molecular type VGII͞AFLP6. Two or three subtypes were observed within VGII͞AFLP6 among outbreak and environmental isolates. All mating-competent isolates were of the ␣-mating type. The emergence of this usually tropical pathogen on Vancouver Island highlights the changing distribution of this genotype and emphasizes the importance of an ongoing collaborative effort to monitor the global epidemiology of this yeast.PCR fingerprinting ͉ amplified fragment length polymorphism (AFLP) ͉ restriction fragment length polymorphism (RFLP) ͉ mating type
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.