Primary cultures of purified astroglia have been shown to exhibit a variety of membrane receptors that regulate intracellular cyclic AMP levels. The experiments described in this paper were completed to examine the effect of such receptor agonists on protein phosphorylation in intact astroglia. An analysis of 32P-labelled proteins derived from whole cell extracts and separated via two-dimensional gel electrophoresis indicated that increasing cyclic AMP levels in astroglia stimulated the phosphorylation of two distinct proteins that had apparent molecular weights/isoelectric points (pI) of 51K/6.0 and 57K/5.7. Similar experiments with cultured meningeal cells indicated that only the 57K/5.7 protein was phosphorylated in response to elevated levels of cyclic AMP. The 51K/6.0 protein was never observed in gels derived from meningeal cells. Immunoblot experiments indicated that the 51K/6.0 protein stained with antiserum to glial fibrillary acidic protein (GFAP) and the 57K/5.7 protein stained with antibodies to vimentin. Concentration-effect studies indicate that these proteins are maximally phosphorylated at concentrations of receptor agonists that only slightly elevate cyclic AMP levels. All receptor agonists that have been shown to increase cyclic AMP levels appear similarly efficacious with respect to increasing the phosphorylation of the two proteins. These experiments suggest that the membrane receptors present on astroglia function, in part, to regulate phosphorylation of the intermediate filament proteins GFAP and vimentin.
We have previously shown that 24,25-(OH)2D3 plays a major role in resting zone (RC) chondrocyte differentiation and that this vitamin D metabolite regulates protein kinase C (PKC). The aim of the present study was to identify the signal transduction pathway used by 24,25-(OH)2D3 to stimulate PKC activation. Confluent, fourth passage RC cells from rat costochondral cartilage were used to evaluate the mechanism of PKC activation. Treatment of RC cultures with 24,25-(OH)2D3 for 90 min produced a dose-dependent increase in diacylglycerol (DAG). Addition of R59022, a diacylglycerol kinase inhibitor, significantly increased PKC activity in cultures treated with 24,25-(OH)2D3. Addition of dioctanoylglycerol (DOG) to plasma membranes isolated from RC increased PKC activity 447-fold. Addition of pertussis toxin or cholera toxin to control cultures elevated basal PKC activity. When added together with 10(-9) M 24,25-(OH)2D3, there was an additive effect on PKC activity but in cultures treated with 10(-8) M 24,25-(OH)2D3, only the hormone-dependent stimulation of PKC was observed. The phospholipase C inhibitor, U73-122, had no effect on PKC activity, indicating that the DAG produced in response to 24,25-(OH)2D3 is not derived from phosphatidylinositol. Addition of the tyrosine kinase inhibitor, genistein, also had no effect on 24,25-(OH)2D3-stimulated PKC, further supporting the hypothesis that phospholipase C is not involved in the mechanism and that phospholipase D is responsible for the increase in DAG production. Phospholipase A2 inhibitors, quinacrine and AACOCF3, and the cyclooxygenase inhibitor indomethacin increased PKC activity in the RC cultures. Exogenous PGE2, one of the downstream products of phospholipase A2 action, inhibited PKC activity. These results suggest that 24,25-(OH)2D3 regulates PKC activity by two distinct phospholipid-dependent mechanisms: production of DAG via phospholipase D and inhibition of the production of PGE2 via inhibition of phospholipase A2 and cyclooxygenase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.