Magnetic skyrmions are chiral spin structures with a whirling configuration. Their topological properties, nanometre size and the fact that they can be moved by small current densities have opened a new paradigm for the manipulation of magnetization at the nanoscale. Chiral skyrmion structures have so far been experimentally demonstrated only in bulk materials and in epitaxial ultrathin films, and under an external magnetic field or at low temperature. Here, we report on the observation of stable skyrmions in sputtered ultrathin Pt/Co/MgO nanostructures at room temperature and zero external magnetic field. We use high lateral resolution X-ray magnetic circular dichroism microscopy to image their chiral Néel internal structure, which we explain as due to the large strength of the Dzyaloshinskii-Moriya interaction as revealed by spin wave spectroscopy measurements. Our results are substantiated by micromagnetic simulations and numerical models, which allow the identification of the physical mechanisms governing the size and stability of the skyrmions.
The lack of large-area synthesis processes on substrates compatible with industry requirements has been one of the major hurdles facing the integration of 2D materials in mainstream technologies. This is particularly the case for the recently discovered monoelemental group V 2D materials which can only be produced by exfoliation or growth on exotic substrates. Herein, to overcome this limitation, we demonstrate a scalable method to synthesize antimonene on germanium substrates using solid-source molecular beam epitaxy. This emerging 2D material has been attracting a great deal of attention due to its high environmental stability and its outstanding optical and electronic properties. In situ low energy electron microscopy allowed the real time investigation and optimization of the 2D growth. Theoretical calculations combined with atomic-scale microscopic and spectroscopic measurements demonstrated that the grown antimonene sheets are of high crystalline quality, interact weakly with germanium, exhibit semimetallic characteristics, and remain stable under ambient conditions. This achievement paves the way for the integration of antimonene in innovative nanoscale and quantum technologies compatible with the current semiconductor manufacturing.
Magnetic skyrmions are chiral spin textures that hold great promise as nanoscale information carriers. Since their first observation at room temperature, progress has been made in their currentinduced manipulation, with fast motion reported in stray-field-coupled multilayers. However, the complex spin textures with hybrid chiralities and large power dissipation in these multilayers limit their practical implementation and the fundamental understanding of their dynamics. Here, we report on the current-driven motion of Néel skyrmions with diameters in the 100-nm range in an ultrathin Pt/Co/MgO trilayer. We find that these skyrmions can be driven at a speed of 100 m s −1 and exhibit a drive-dependent skyrmion Hall effect, which is accounted for by the effect of pinning. Our experiments are well substantiated by an analytical model of the skyrmion dynamics as well as by micromagnetic simulations including material inhomogeneities. This good agreement is enabled by the simple skyrmion spin structure in our system and a thorough characterization of its static and dynamical properties.
Topological protection is an elegant way of warranting the integrity of quantum and nanosized systems. In magnetism one example is the Bloch-point, a peculiar object implying the local vanishing of magnetization within a ferromagnet. Its existence had been postulated and described theoretically since several decades, however it has never been observed. We confirm experimentally the existence of Bloch points, imaged within domain walls in cylindrical magnetic nanowires, combining surface and transmission XMCD-PEEM magnetic microscopy. This opens the way to the experimental search for peculiar phenomena predicted during the motion of Bloch-point-based domain walls.There is a rising interest for physical systems providing topological protection. The interest is both fundamental to elucidate the underlying physical phenomena, and applied as a mean to provide robustness to a state against external perturbations and decoherence pathways. For example, the peculiar topology of the band structure of carbon nanotubes and graphene forbids backscattering of charge carriers [1], an effect which is often invoked to explain the high mobilities up to room temperature [2]. A similar effect occurs at the surface of so-called topological insulators, together with a locking of the spin of charge carriers; this provides spin currents protected against depolarization [3]. A photonic analogue was also designed by combining helical wave guides on a lattice with a graphene-like honeycomb topology, removing time-reversal symmetry and thereby preventing backscattering of light [4].In systems displaying a directional order parameter such as liquid crystals and ferromagnets, interesting phenomena are associated with the slowly-varying texture of the order field (magnetization for a ferromagnet). The requirement of local continuity of a vector field with fixed magnitude provides a topological protection against the transformation of the texture. A prototypical case in magnetism is skyrmions, which are essentially local two-dimensional chiral spin textures stabilized by the Dzyaloshinskii-Moriya interaction, embedded in an otherwise uniformly-magnetized surrounding. Despite these surroundings skyrmions cannot unwind continuously as explained by the above continuity constraints of the magnetization field, explaining their topological protection. Skyrmions have first been predicted theoretically [5], then confirmed experimentally in both bulk [6] and thin film forms [7].Bloch points are yet another type of topologicallyprotected magnetic texture which cannot be unwound, however of a three-dimensional nature. Bloch points are such that given the distribution of magnetization set on a closed surface like a sphere, the enclosed volume cannot be mapped with a continuous magnetization field of finite magnitude. This occurs e.g. for hedge-hog configurations, or more generally whenever all directions of magnetization are mapped on the closed surface (Fig. 1a-b). Such boundary conditions imply the local cancellation of the modulus of magnetization on a...
Silicene, the silicon equivalent of graphene, is attracting increasing scientific and technological attention in view of the exploitation of its exotic electronic properties. This novel material has been theoretically predicted to exist as a free-standing layer in a low-buckled, stable form, and can be synthesized by the deposition of Si on appropriate crystalline substrates. By employing low-energy electron diffraction and microscopy, we have studied the growth of Si on Ag(1 1 1) and observed a rich variety of rotationally non-equivalent silicene structures. Our results highlight a very complex formation diagram, reflecting the coexistence of different and nearly degenerate silicene phases, whose relative abundance can be controlled by varying the Si coverage and growth temperature. At variance with other studies, we find that the formation of single-phase silicene monolayers cannot be achieved on Ag(1 1 1).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.