A layered structure compound LiNiO2 material is synthesized by the solid-state reaction method under air atmosphere in the temperature range from 750 °C to 850 °C using Li2CO3 and NiO as the starting materials for 20 hours. The physical properties of the synthesized powder are investigated by X-ray diffraction (XRD), Field effect scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopic (FT-IR) techniques. The results of XRD patterns possessed the α-NaFeO2 structure of the rhombohedral system (space group, ) with no evidence of any impurities. The morphological features of the powders are characterized by field effect scanning electron microscopy (FESEM). The particles of LiNiO2 powder are generally in the form of a smoothly edged polyhedron and their average grain size is approximately 2 - 3 μm. The FT-IR spectroscopic data of LiNiO2 reveal the structure of the oxide lattice constituted by LiO6 and NiO6 octahedra. In general, from this study, we conclude that the LiNiO2 synthesized by solid state reaction method at different temperatures to increase in the sintering temperature. The lattice constant is increased, while the sintering temperature is increased. The maximum and minimum intensity ratios of XRD spectra shows that the optimum calcination condition is 800°C for 20 h. At 750-850°C, the particle size distribution is in the range of 2 - 3 μm.
A layered structure compound LiNiO2 material is synthesized by the solid-state reaction method under air atmosphere in the temperature range from 750 °C to 850 °C using Li2CO3 and NiO as the starting materials for 20 hours. The physical properties of the synthesized powder are investigated by X-ray diffraction (XRD), Field effect scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopic (FT-IR) techniques. The results of XRD patterns possessed the α-NaFeO2 structure of the rhombohedral system (space group, ) with no evidence of any impurities. The morphological features of the powders are characterized by field effect scanning electron microscopy (FESEM). The particles of LiNiO2 powder are generally in the form of a smoothly edged polyhedron and their average grain size is approximately 2 - 3 μm. The FT-IR spectroscopic data of LiNiO2 reveal the structure of the oxide lattice constituted by LiO6 and NiO6 octahedra. In general, from this study, we conclude that the LiNiO2 synthesized by solid state reaction method at different temperatures to increase in the sintering temperature. The lattice constant is increased, while the sintering temperature is increased. The maximum and minimum intensity ratios of XRD spectra shows that the optimum calcination condition is 800°C for 20 h. At 750-850°C, the particle size distribution is in the range of 2 - 3 μm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.