Background: Five large insecticide-treated net (ITN) programmes and two indoor residual spraying (IRS) programmes were compared using a standardized costing methodology.
Studies on the spatial distribution of anopheline mosquito larvae were conducted in 302 villages over two transmission seasons in Eritrea. Additional longitudinal studies were also conducted at eight villages over a 24-mo period to determine the seasonal variation in anopheline larval densities. Eight anopheline species were identified with Anopheles arabiensis predominating in most of the habitats. Other species collected included: An. cinereus, An. pretoriensis, An. d'thali, An. funestus, An. squamosus, An. adenensis, and An. demeilloni. An. arabiensis was found in five of the six aquatic habitats found positive for anopheline larvae during the survey. Anopheles larvae were sampled predominantly from stream edges and streambed pools, with samples from this habitat type representing 91.2% (n = 9481) of the total anopheline larval collection in the spatial distribution survey. Other important anopheline habitats included rain pools, ponds, dams, swamps, and drainage channels at communal water supply points. Anopheline larvae were abundant in habitats that were shallow, slow flowing and had clear water. The presence of vegetation, intensity of shade, and permanence of aquatic habitats were not significant determinants of larval distribution and abundance. Larval density was positively correlated with water temperature. Larval abundance increased during the wet season and decreased in the dry season but the timing of peak densities was variable among habitat types and zones. Anopheline larvae were collected all year round with the dry season larval production restricted mainly to artificial aquatic habitats such as drainage channels at communal water supply points. This study provides important information on seasonal patterns of anopheline larval production and larval habitat diversity on a countrywide scale that will be useful in guiding larval control operations in Eritrea.
Summaryobjective To assess the effectiveness of impregnated mosquito nets, indoor residual spraying and larval control relative to the impacts of climate variability in the decline of malaria cases in Eritrea.methods Monthly data on clinical malaria cases by subzoba (district) in three zobas (zones) of Eritrea for 1998-2003 were used in Poisson regression models to determine whether there is statistical evidence for reduction in cases by DDT, malathion, impregnated nets and larval control used over the period, while analysing the effects of satellite-derived climate variables in the same geographic areas.results Both indoor residual spraying (with DDT or malathion) and impregnated nets were independently and significantly negatively associated with reduction in cases, as was larval control in one zoba. Malaria cases were significantly positively related to differences in current and previous months' vegetation (NDVI) anomalies. The relationship to rainfall differences 2 and 3 months previously was also significant, but the direction of the effect varied by zoba. Standardized regression coefficients indicated a greater effect of climate in the zoba with less intense malaria transmission.conclusion The results support the view that both indoor residual spraying and impregnated nets have been independently effective against malaria, and that larval control was also effective in one area. Thus climate, while significant, is not the only explanation for the recent decline in malaria cases in Eritrea. If appropriate statistical approaches are used, routine surveillance data from cases attending health facilities can be useful for assessing control programme success and providing estimates of the effectiveness of individual control measures. Effectiveness estimates suitable for use in cost-effectiveness analysis have been obtained.
Summaryobjective This paper describes determinants of insecticide treated net (ITN) ownership and use in malarious areas of Eritrea. With ITN distribution and re-treatment now free for all living in these areas, we examine barriers (other than cost) to access and use of ITNs. We explore the differences between use of an ITN as a proportion of all households in the survey (the roll back malaria indicator), and use of an ITN as a proportion of those households who already own an ITN.methods A modified two-stage cluster design was used to collect data from a sample of households (n ¼ 2341) in the three most malarious administrative zobas (zones or provinces). Logistic regression was used to analyse the data.results Our findings suggest environmental heterogeneity among zobas (including program effects specific to each zoba), perception of risk, and proximity to a clinic are important predictors of ITN possession and use. Among households with at least one ITN, 17.0% reported that children under five were not under an ITN the night before the survey, while half of all such households did not have all occupants using them the night before the survey. The number of ITNs, as well as zoba, was also significant determinants of use in these households with at least one ITN.
Eritrea has a successful malaria control program, but it is still susceptible to devastating malaria epidemics. Monthly data on clinical malaria cases from 242 health facilities in 58 subzobas (districts) of Eritrea from 1996 to 2003 were used in a novel stratification process using principal component analysis and nonhierarchical clustering to define five areas with distinct malaria intensity and seasonality patterns, to guide future interventions and development of an epidemic early warning system. Relationships between monthly clinical malaria incidence by subzoba and monthly climate data from several sources, and with seasonal climate forecasts, were investigated. Remotely sensed climate data were averaged over the same subzoba geographic administrative units as the malaria cases. Although correlation was good between malaria anomalies and actual rainfall from ground stations (lagged by 2 months), the stations did not have sufficiently even coverage to be widely useful. Satellite derived rainfall from the Climate Prediction Center Merged Analysis of Precipitation was correlated with malaria incidence anomalies, with a lead time of 2-3 months. NDVI anomalies were highly correlated with malaria incidence anomalies, particularly in the semi-arid north of the country and along the northern Red Sea coast, which is a highly epidemic-prone area. Eritrea has 2 distinct rainy seasons in different parts of the country. The seasonal forecasting skill from Global Circulation Models for the June/July/August season was low except for the Eastern border. For the coastal October/November/December season, forecasting skill was good only during the 1997-1998 El Niño event. For epidemic control, shorter-range warning based on remotely sensed rainfall estimates and an enhanced epidemic early-detection system based on data derived for this study are needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.