Abstract. A study of three-dimensional perturbed magnetic field structures and transport for edge localized mode control experiments with resonant magnetic perturbations at DIII-D is presented. We focus on ITER-Similar Shape plasmas at ITER relevant electron pedestal collisionalities ν * e ∼ 0.2. This study is performed in comparison to results from TEXTOR-Dynamic Ergodic Divertor circular limiter plasmas. For both experiments the magnetic field structure is analyzed in the vacuum paradigm -superimposing the external RMP field on the unperturbed equilibrium. At TEXTOR this description holds for normalized poloidal flux Ψ N > 0.7 without tearing modes driven by the RMP field. For DIII-D H-mode plasmas the validity of this approach still needs to be established. In this paper a method is discussed to diagnose the degree of edge stochastization based on a comparison between modeled magnetic footprints on the divertor targets and experimental data. Clear evidence is presented for the existence of a generic separatrix perturbation causing striation of target particle fluxes. However, heat fluxes into these striations are small. This observation can be explained by accounting for the different heat and particle source locations and the 3D trajectories of the open, perturbed field lines towards the divertor target. Analysis of the transport characteristics filling the perturbed separatrix lobes based on initial EM C3/EIREN E modeling suggests the existence of open field lines connecting the stochastic edge to the target pattern. However, the width and inward most extent of the stochastic layer can not yet be quantified.
The generation of runaway electrons in the international fusion experiment ITER disruptions can lead to severe damage at plasma facing components. Massive gas injection might inhibit the generation process, but the amount of gas needed can affect, e.g., vacuum systems. Alternatively, magnetic perturbations can suppress runaway generation by increasing the loss rate. In TEXTOR disruptions runaway losses were enhanced by the application of resonant magnetic perturbations with toroidal mode number n 1 and n 2. The disruptions are initiated by fast injection of about 3 10 21 argon atoms, which leads to a reliable generation of runaway electrons. At sufficiently high perturbation levels a reduction of the runaway current, a shortening of the current plateau, and the suppression of high energetic runaways are observed. These findings indicate the suppression of the runaway avalanche during disruptions.
Abstract. At the TEXTOR tokamak an external resonant magnetic perturbation is applied with the Dynamic Ergodic Divertor to control the edge transport properties. The approaches to analyze the impact of such kind of edge stochastisation on transport apply mostly a shell like picture which includes a dependence of transport from magnetic field topology in the radial direction only. In this paper multiple experimental evidence is presented that contrary to these approaches the perturbation applied forms a poloidally heterogenous edge layer in which the transport characteristics are determined by the poloidally alternating field line behavior. A thorough analysis of density and temperature profiles and their gradients for base mode spectra with poloidal/toroidal mode numbers of m/n = 12/4 and m/n = 6/2 is worked out in comparison to the modeled magnetic field topology and results from three dimensional transport modeling with EMC3/EIRENE. Hereby two poloidally adjacent transport domains are identified for the first time in such detail. A domain representing a helical scrape off layer (SOL) is formed by field lines with short connection and therefore prevailing parallel transport to the wall elements. Here, the field lines are clustered into extended flux tubes embedded into a long connection length ergodic domain with diffusive transport characteristics and enhanced radial transport.
Abstract. Runaway electrons represent a serious problem for the reliable operation of the future experimental tokamak ITER. Due to the multiplication factor of exp(50) in the avalanche even a few seed runaway electrons will result in a beam of high energetic electrons that is able to damage the machine. Thus suppression of runaway electrons is a task of high importance, for which reason we present here a systematic study of runaway electrons following massive gas injection in TEXTOR. Argon injection can cause generation of runaways carrying up to 30% of the initial plasma current, while disruptions triggered by injection of helium or of mixtures of argon (5, 10, 20%) with deuterium are runaway free. Disruptions caused by argon injection finally become runaway free for very large amounts of injected atoms. The appearance/absence of runaway electrons is related to the fraction of atoms delivered to the plasma center. This so called mixing efficiency is deduced from a 0D model of the current quench. The estimated mixing efficiency is: 3% for argon, 15% for an argon/deuterium mixture and about 40% for helium. A low mixing efficiency of high-Z impurities can have a strong implication for the design of the disruption mitigation system for ITER. However, a quantitative prediction requires a better understanding of the mixing mechanism.
Magnetic turbulence is observed at the beginning of the current quench in intended TEXTOR disruptions. Runaway electron (RE) suppression has been experimentally found at magnetic turbulence larger than a certain threshold. Below this threshold, the generated RE current is inversely proportional to the level of magnetic turbulence. The magnetic turbulence originates from the background plasma and the amplitude depends strongly on the toroidal magnetic field and plasma electron density. These results explain the previously found toroidal field threshold for RE generation and have to be considered in predictions for RE generation in ITER.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.