Abstract. The relationships between rainfall, hydrology and landslide movement are often difficult to establish. In this context, ground-water flow analyses and dynamic modelling can help to clarify these complex relations, simulate the landslide hydrological behaviour in real or hypothetical situations, and help to forecast future scenarios based on environmental change. The primary objective of this study is to investigate the possibility of including more temporal and spatial information in landslide hydrology forecasting, by using a physically based spatially distributed model. Results of the hydrological and geomorphological investigation of the Super-Sauze earthflow, one of the persistently active landslide occurring in clay-rich material of the French Alps, are presented. Field surveys, continuous monitoring and interpretation of the data have shown that, in such material, the groundwater level fluctuates on a seasonal time scale, with a strong influence of the unsaturated zone. Therefore a coupled unsaturated/saturated model, incorporating Darcian saturated flow, fissure flow and meltwater flow is needed to adequately represent the landslide hydrology. The conceptual model is implemented in a 2.5-D spatially distributed hydrological model. The model is calibrated and validated on a multi-parameters database acquired on the site since 1997. The complex time-dependent and three-dimensional groundwater regime is well described, in both the short-and longterm. The hydrological model is used to forecast the future hydrological behaviour of the earthflow in response to potential environmental changes.
Abstract.This article presents MassMov2D, a twodimensional model of mud and debris flow dynamics over complex topography, based on a numerical integration of the depth-averaged motion equations using a shallow water approximation. The core part of the model was implemented using the GIS scripting language PCRaster. This environment provides visualization of the results through map animations and time series, and a user-friendly interface. The constitutive equations and the numerical solution adopted in MassMov2D are presented in this article. The model was applied to two field case studies of mud flows on torrential alluvial fans, one in the Austrian Tyrol (Wartschenbach torrent) and the other in the French Alps (Faucon torrent). Existing data on the debris flow volume, input discharge and deposits were used to back-analyze those events and estimate the values of the leading parameters. The results were compared with modeling codes used by other authors for the same case studies. The results obtained with MassMov2D matched well with the observed debris flow deposits, and are in agreement with those obtained using alternative codes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.