Background
Photodynamic therapy (PDT) is a non-invasive treatment modality that destroys abnormally growing cells or microorganisms. Porphyrins are used as photosensitizers in PDT; however, their clinical application has been limited by their poor water solubility, resulting in aggregation and low quantum yields of reactive oxygen species (ROS).
Methods
To overcome these limitations and improve PDT efficacy, we herein report the conjugation of ZnCuInS/ZnS (ZCIS/ZnS) quantum dots (QDs) to 5,10,15,20-tetrakis(3-hydroxyphenyl)porphyrin (mTHPP). The optimal conditions for QDs porphyrin conjugation formation were systematically evaluated.
Discussion
This study further assessed the PDT efficacy and antibacterial potency of the synthesized ZCIS/ZnS-mTHPP conjugates. The PDT efficacy of the QDs, mTHPP, and conjugate was evaluated against the murine metastatic melanoma (B16 F10 Nex2) cell line. This was performed with and without LED irradiation.
Results
The conjugate exhibited the highest reduction in cell viability following LED irradiation (72%) compared to the bare QDs (19%) and mTHPP (1%). Antimicrobial studies conducted on
E. coli
showed that the conjugation exhibits a higher antibacterial effect than the bare QDs, even without light.
Conclusion
The results suggest that conjugate is a promising class of materials for anti-cancer and antimicrobial PDT.
The application of gold nanorods (AuNRs) and graphene oxide (GO) has been widely studied due to their unique properties. Although each material has its own challenges, their combination produces an exceptional material for many applications such as sensor, therapeutics, and many others. This review covers the progress made so far in the synthesis and application of GO-coated AuNRs (GO–AuNRs). Initially, it highlights different methods of synthesizing AuNRs and GO followed by two approaches (ex situ and in situ approaches) of coating AuNRs with GO. In addition, the properties of GO–AuNRs composite such as biocompatibility, photothermal profiling, and their various applications, which include photothermal therapy, theranostic, sensor, and other applications of GO–AuNRs are also discussed. The review concludes with challenges associated with GO–AuNRs and future perspectives.
The cancer mortality rate has increased, and conventional cancer treatments are known for having many side effects. Therefore, it is imperative to find a new therapeutic agent or modify the existing therapeutic agents for better performance and efficiency. Herein, a synergetic phototherapeutic agent based on a combination of photothermal and photodynamic therapy is proposed. The phototherapeutic agent consists of water-soluble cationic porphyrin (5,10,15,20-tetrakis(N-methylpyridinium-3-yl)porphyrin, TMePyP), and gold nanorods (AuNRs) anchored on graphene-oxide (GO) sheet. The TMePyP was initially synthesized by Adler method, followed by methylation, while GO and AuNRs were synthesized using Hummer’s and seed-mediated methods, respectively. The structural and optical properties of TMePyP were confirmed using UV-Vis, zeta analyzer, PL, FTIR and NMR. The formation of both GO and AuNRs was confirmed by UV-Vis-NIR, FTIR, TEM and zeta analyzer. TMePyP and AuNRs were anchored on GO to form GO@AuNRs-TMePyP nanocomposite. The as-synthesized nanocomposite was stable in RPMI and PBS medium, and, on irradiation, produced high heat than the bare AuNRs, with high photothermal efficiency. In addition, the nanocomposite produced higher singlet oxygen than TMePyP with high biocompatibility in the absence of light. These results indicated that the as-synthesized nanocomposite is a promising dual photodynamic and photothermal agent for cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.