A catastrophic flood event which caused massive economic losses occurred in Thailand, in 2011.Several studies have already been conducted to analyze the Thai floods, but none of them have assessed the impacts of reservoir operation on flood inundation. This study addresses this gap by combining physically based hydrological models to explicitly simulate the impacts of reservoir operation on flooding in the Chao Phraya River Basin, Thailand. H08, an integrated water resources model with a reservoir operation module, was combined with CaMa-Flood, a river routing model with representation of flood dynamics. The combined H08-CaMa model was applied to simulate and assess the historical and alternative reservoir operation rules in the two largest reservoirs in the basin. The combined H08-CaMa model effectively simulated the 2011 flood: regulated flows at a major gauging station have high daily NSE-coefficient of 92% as compared with observed discharge; spatiotemporal extent of simulated flood inundation match well with those of satellite observations. Simulation results show that through the operation of reservoirs in 2011, flood volume was reduced by 8.6 billion m 3 and both depth and area of flooding were reduced by 40% on the average. Nonetheless, simple modifications in reservoir operation proved to further reduce the flood volume by 2.4 million m 3 and the depth and area of flooding by 20% on the average. By modeling reservoir operation with a hydrodynamic model, a more realistic simulation of the 2011 Thai flood was made possible, and the potential of reducing flood inundation through improved reservoir management was quantified.
Abstract:A quasi-real-time hydrological simulation system was developed for the Chao Phraya River in Thailand. The system was largely based on ground meteorological observations from the Thai Meteorological Department (TMD) Automatic Weather Stations (AWSs), which are updated daily and available online. As radiation data were not measured by the TMD AWSs, they were obtained from the global meteorological data of the Japan Meteorological Agency Climate Data Assimilation System. A macro-scale water resources model termed H08 was used for hydrological simulations. The model's hydrological parameters were set from a series of sensitivity simulations for 2012. The model effectively reproduced the monthly hydrograph at the Nakhon Sawan and other major river gauging stations. The performance at the Sirikit Dam was poor, which could be attributed to erroneous input rainfall data due to the low density of AWSs. The simulation was continued up to September 30, 2013, or the date for which the latest data were available. The overall performance was fair and implied potential applicability of the system for quasi-real-time flood tracking and basic forecasting.
Abstract:We projected future river discharge in the Chao Phraya River basin and evaluated the uncertainty in future climate projections by using different resolutions and ensemble experiments of the Atmospheric General Circulation Model of the Meteorological Research Institute (MRI-AGCM). We also obtained estimates of precipitation, evaporation, runoff, and river discharge under climate conditions projected for the late 21st century. The results show that precipitation is projected to significantly increase in the future during April to August, excluding May. The projected river discharge at Nakhon Sawan located in the central region shows a peak in September, a delay of one month after the maximum monthly mean precipitation. The estimated reduction in river discharge for January and February was robust based on all members of the 60-km mesh MRI-AGCM ensembles changing in the same direction as that of the 20-km mesh MRI-AGCM. The uncertainty assessment conducted in this study could lead to increased robustness in projected changes in mean river discharge in the late 21 st century for this basin.
This research focuses on dam reservoir operation effective in flood mitigation and water resource reservation on a seasonal scale. Based on the relationship between discharge characteristics in the upper watershed of Chao Phraya River and flood occurrences in the lower watershed, it was clarified that the dam reservoir operation most effective in the rainy season was determining the lowest reservoir volume in August for the Sirikit Dam reservoir and in July for the Bhumibol Dam reservoir, and storing water until November. Furthermore, by the probability evaluation on the free reservoir capacities of both dams estimated from the predetermined lowest reservoir volume and inflow volume in both dams, the dam reservoir operation considering the importance of flood mitigation and water resource reservation on a seasonal scale can be achieved.
Abstract. Water diversion systems play crucial roles in assuaging flood risk by diverting and redistributing water within and among basins. For flood and drought assessments, including investigations of the effects of diversion systems on river discharge worldwide, the explicit inclusion of these systems into global hydrological models (GHMs) is essential. However, such representation remains in the pioneering stage because of complex canal operations and insufficient data. Therefore, we developed a regionalized canal operation scheme and implemented it in the H08 GHM for flood diversion in the Chao Phraya River basin (CPRB), Thailand, which is a complex river network with several natural and artificial diversion canals and has been subject to severe flooding in the past, including recent years. Region-specific validation results revealed that the enhanced H08 model with the regionalized diversion scheme could effectively simulate the observed flood diversion pattern in the CPRB. Diverted water comprises approximately 49 % of the annual average river discharge in the CPRB. The simulations further confirmed that the presented canal scheme had the potential to reduce flood risk in the basin by significantly reducing the number of flooding days. A generalized canal scheme with simple input data settings was also constructed for future global applications, providing insights into the maximum level of discharge reduction achievable with diversion of nearly 57 % of the annual average river discharge of the CPRB. Overall, the enhanced H08 model with canal schemes can be adapted and applied to different contexts and regions, accounting for the characteristics of each river network by maintaining the basic principles unaltered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.