The open reading frame (ORF) 1ab of SARS-CoV2 encodes non-structural proteins involved in viral RNA functions like translation and replication including nsp1-4; 3C like proteinase; nsp6-10; RNA dependent RNA polymerase (RdRp); helicase and 3'-5' exonuclease. Sequence analyses of ORF1ab unravelled emergence of mutations especially in the viral RdRp and helicase at specific positions, both of which are important in mediating viral RNA replication. Since proteins are dynamic in nature and their functions are governed by the molecular motions, we performed normal mode analyses of the SARS-CoV2 wild type and mutant RdRp and helicases to understand the effect of mutations on their structure, conformation, dynamics and thus function. Structural analyses revealed that mutation of RdRp (at position 4715 in the context of the polyprotein/ at position 323 of RdRp) leads to rigidification of structure and that mutation in the helicase (at position 5828 of polyprotein/ position 504) leads to destabilization increasing the flexibility of the protein structure. Such structural modifications and protein dynamics alterations might alter unwinding of complex RNA stem loop structures, the affinity/ avidity of polymerase RNA interactions and in turn the viral RNA replication. The mutation analyses of proteins of the SARS-CoV2 RNA replication complex would help targeting RdRp better for therapeutic intervention.
India has recently started sequencing SARS-CoV2 genome from clinical isolates. Currently only few sequences are available from three states in India. Kerala was the first state to deposit complete sequence from two isolates followed by one from Gujarat. On April 27, 2020, the first five sequences from the state of West Bengal (Eastern India) were deposited on GISAID, a global initiative for sharing avian flu data. In this study, we have analysed the spike protein sequences from all five isolates and also compared their similarities or differences with other sequences reported in India and with isolates of Wuhan origin. We report one unique mutation at position 723 and another at 1124 in the S2 domain of spike protein of the isolates from West Bengal only. There was one mutation downstream of the receptor binding domain at position 614 in S1 domain which was common with the sequence from Gujarat (a state of western India). Mutation in the S2 domain showed changes in the secondary structure of the spike protein at region of the mutation. We also studied molecular dynamics using normal mode analyses and found that this mutation decreases the flexibility of S2 domain. Since both S1 and S2 are important in receptor binding followed by entry in the host cells, such mutations may define the affinity or avidity of receptor binding.
Mitochondria mediate energy metabolism, apoptosis, and aging, while mitochondrial disruption leads to age-related diseases that include age-related macular degeneration (AMD). Descriptions of mitochondrial morphology have been non-systematic and qualitative, due to lack of knowledge on the molecular mechanism of mitochondrial dynamics. The current study analyzed mitochondrial size, shape, and position quantitatively in retinal pigment epithelial cells (RPE) using a systematic computational model to suggest mitochondrial trafficking under oxidative environment. Our previous proteomic study suggested that prohibitin is a mitochondrial decay biomarker in the RPE. The current study examined the prohibitin interactome map using immunoprecipitation data to determine the indirect signaling on cytoskeletal changes and transcriptional regulation by prohibitin. Immunocytochemistry and immunoprecipitation demonstrated that there is a positive correlation between mitochondrial changes and altered filaments as well as prohibitin interactions with kinesin and unknown proteins in the RPE. Specific cytoskeletal and nuclear protein-binding mechanisms may exist to regulate prohibitin-mediated reactions as key elements, including vimentin and p53, to control apoptosis in mitochondria and the nucleus. Prohibitin may regulate mitochondrial trafficking through unknown proteins that include 110 kDa protein with myosin head domain and 88 kDa protein with cadherin repeat domain. Altered cytoskeleton may represent a mitochondrial decay signature in the RPE. The current study suggests that mitochondrial dynamics and cytoskeletal changes are critical for controlling mitochondrial distribution and function. Further, imbalance of retrograde vs. anterograde mitochondrial trafficking may initiate the pathogenic reaction in adult-onset neurodegenerative diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.