Identifying mobile apps based on network traffic has multiple benefits for security and network management. However, it is a challenging task due to multiple reasons. First, network traffic is encrypted using an end-to-end encryption mechanism to protect data privacy. Second, user behavior changes dynamically when using different functionalities of mobile apps. Third, it is hard to differentiate traffic behavior due to common shared libraries and content delivery within modern mobile apps. Existing techniques managed to address the encryption issue but not the others, thus achieving low detection/classification accuracy. In this paper, we present MApp-Graph, a novel technique to classify mobile apps, addressing all the above issues. Given a chunk of network traffic generated by a mobile app, MAppGraph constructs a communication graph whose nodes are defined by tuples of IP address and port of the services connected by the app, edges are established by the weighted communication correlation among the nodes. We extract information from packet headers without analyzing encrypted payload to form feature vectors of the nodes. We leverage deep graph convolution neural networks to learn the diverse communication behavior of mobile apps from a large number of graphs and achieve a fast classification. To validate our technique, we collect traffic of a hundred mobile apps on the Android platform and run extensive experiments with various experimental scenarios. The experimental results show that MAppGraph significantly improves classification accuracy by up to 20% in various metrics compared to recently developed techniques and demonstrates its practicality for security and network management for mobile services.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.