Background Free-text communication between patients and providers plays an increasing role in chronic disease management, through platforms varying from traditional health care portals to novel mobile messaging apps. These text data are rich resources for clinical purposes, but their sheer volume render them difficult to manage. Even automated approaches, such as natural language processing, require labor-intensive manual classification for developing training data sets. Automated approaches to organizing free-text data are necessary to facilitate use of free-text communication for clinical care. Objective The aim of this study was to apply unsupervised learning approaches to (1) understand the types of topics discussed and (2) learn medication-related intents from messages sent between patients and providers through a bidirectional text messaging system for managing participant blood pressure (BP). Methods This study was a secondary analysis of deidentified messages from a remote, mobile, text-based employee hypertension management program at an academic institution. We trained a latent Dirichlet allocation (LDA) model for each message type (ie, inbound patient messages and outbound provider messages) and identified the distribution of major topics and significant topics (probability >.20) across message types. Next, we annotated all medication-related messages with a single medication intent. Then, we trained a second medication-specific LDA (medLDA) model to assess how well the unsupervised method could identify more fine-grained medication intents. We encoded each medication message with n-grams (n=1-3 words) using spaCy, clinical named entities using Stanza, and medication categories using MedEx; we then applied chi-square feature selection to learn the most informative features associated with each medication intent. Results In total, 253 participants and 5 providers engaged in the program, generating 12,131 total messages: 46.90% (n=5689) patient messages and 53.10% (n=6442) provider messages. Most patient messages corresponded to BP reporting, BP encouragement, and appointment scheduling; most provider messages corresponded to BP reporting, medication adherence, and confirmatory statements. Most patient and provider messages contained 1 topic and few contained more than 3 topics identified using LDA. In total, 534 medication messages were annotated with a single medication intent. Of these, 282 (52.8%) were patient medication messages: most referred to the medication request intent (n=134, 47.5%). Most of the 252 (47.2%) provider medication messages referred to the medication question intent (n=173, 68.7%). Although the medLDA model could identify a majority intent within each topic, it could not distinguish medication intents with low prevalence within patient or provider messages. Richer feature engineering identified informative lexical-semantic patterns associated with each medication intent class. Conclusions LDA can be an effective method for generating subgroups of messages with similar term usage and facilitating the review of topics to inform annotations. However, few training cases and shared vocabulary between intents precludes the use of LDA for fully automated, deep, medication intent classification. International Registered Report Identifier (IRRID) RR2-10.1101/2021.12.23.21268061
BACKGROUND Free-text communication between patients and providers plays an increasing role in chronic disease management, through platforms varying from traditional health care portals to novel mobile messaging apps. These text data are rich resources for clinical purposes, but their sheer volume render them difficult to manage. Even automated approaches, such as natural language processing, require labor-intensive manual classification for developing training data sets. Automated approaches to organizing free-text data are necessary to facilitate use of free-text communication for clinical care. OBJECTIVE The aim of this study was to apply unsupervised learning approaches to (1) understand the types of topics discussed and (2) learn medication-related intents from messages sent between patients and providers through a bidirectional text messaging system for managing participant blood pressure (BP). METHODS This study was a secondary analysis of deidentified messages from a remote, mobile, text-based employee hypertension management program at an academic institution. We trained a latent Dirichlet allocation (LDA) model for each message type (ie, inbound patient messages and outbound provider messages) and identified the distribution of major topics and significant topics (probability >.20) across message types. Next, we annotated all medication-related messages with a single medication intent. Then, we trained a second medication-specific LDA (medLDA) model to assess how well the unsupervised method could identify more fine-grained medication intents. We encoded each medication message with n-grams (n=1-3 words) using spaCy, clinical named entities using Stanza, and medication categories using MedEx; we then applied chi-square feature selection to learn the most informative features associated with each medication intent. RESULTS In total, 253 participants and 5 providers engaged in the program, generating 12,131 total messages: 46.90% (n=5689) patient messages and 53.10% (n=6442) provider messages. Most patient messages corresponded to BP reporting, BP encouragement, and appointment scheduling; most provider messages corresponded to BP reporting, medication adherence, and confirmatory statements. Most patient and provider messages contained 1 topic and few contained more than 3 topics identified using LDA. In total, 534 medication messages were annotated with a single medication intent. Of these, 282 (52.8%) were patient medication messages: most referred to the medication request intent (n=134, 47.5%). Most of the 252 (47.2%) provider medication messages referred to the medication question intent (n=173, 68.7%). Although the medLDA model could identify a majority intent within each topic, it could not distinguish medication intents with low prevalence within patient or provider messages. Richer feature engineering identified informative lexical-semantic patterns associated with each medication intent class. CONCLUSIONS LDA can be an effective method for generating subgroups of messages with similar term usage and facilitating the review of topics to inform annotations. However, few training cases and shared vocabulary between intents precludes the use of LDA for fully automated, deep, medication intent classification. INTERNATIONAL REGISTERED REPORT RR2-10.1101/2021.12.23.21268061
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.