The stability of structural materials in extreme nuclear reactor environments—with high temperature, high radiation, and corrosive media—directly affects the lifespan of the reactor. In such extreme environments, an oxide layer on the metal surface acts as a passive layer protecting the metal underneath from corrosion. To predict the irradiation effect on the metal layer in these metal/oxide bilayers, nondestructive depth-resolved positron annihilation lifetime spectroscopy (PALS) and complementary transmission electron microscopy (TEM) were used to investigate small-scale defects created by ion irradiation in an epitaxially grown (100) Fe film capped with a 50 nm Fe2O3 oxide layer. In this study, the evolution of induced vacancies was monitored, from individual vacancy formation at low doses—10−5 dpa—to larger vacancy cluster formation at increasing doses, showing the sensitivity of positron annihilation spectroscopy technique. Furthermore, PALS measurements reveal how the presence of a metal–oxide interface modifies the distribution of point defects induced by irradiation. TEM measurements show that irradiation induced dislocations at the interface is the mechanism behind the redistribution of point defects causing their accumulation close to the interface. This work demonstrates that the passive oxide layers formed during corrosion impact the distribution and accumulation of radiation induced defects in the metal underneath and emphasizes that the synergistic impact of radiation and corrosion will differ from their individual impacts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.