Data are essential in all areas of geophysics. They are used to better understand and manage systems, either directly or via models. Given the complexity and spatiotemporal variability of geophysical systems (e.g., precipitation), a lack of sufficient data is a perennial problem, which is exacerbated by various drivers, such as climate change and urbanization. In recent years, crowdsourcing has become increasingly prominent as a means of supplementing data obtained from more traditional sources, particularly due to its relatively low implementation cost and ability to increase the spatial and/or temporal resolution of data significantly. Given the proliferation of different crowdsourcing methods in geophysics and the promise they have shown, it is timely to assess the state of the art in this field, to identify potential issues and map out a way forward. In this paper, crowdsourcing‐based data acquisition methods that have been used in seven domains of geophysics, including weather, precipitation, air pollution, geography, ecology, surface water, and natural hazard management, are discussed based on a review of 162 papers. In addition, a novel framework for categorizing these methods is introduced and applied to the methods used in the seven domains of geophysics considered in this review. This paper also features a review of 93 papers dealing with issues that are common to data acquisition methods in different domains of geophysics, including the management of crowdsourcing projects, data quality, data processing, and data privacy. In each of these areas, the current status is discussed and challenges and future directions are outlined.
Abstract. Citizen contributions to science have been successfully implemented in many fields, and water resources is one of them. Through citizens, it is possible to collect data and obtain a more integrated decision-making process. Specifically, data scarcity has always been an issue in flood modelling, which has been addressed in the last decades by remote sensing and is already being discussed in the citizen science context. With this in mind, this article aims to review the literature on the topic and analyse the opportunities and challenges that lie ahead. The literature on monitoring, mapping and modelling, was evaluated according to the flood-related variable citizens contributed to. Pros and cons of the collection/analysis methods were summarised. Then, pertinent publications were mapped into the flood modelling cycle, considering how citizen data properties (spatial and temporal coverage, uncertainty and volume) are related to its integration into modelling. It was clear that the number of studies in the area is rising. There are positive experiences reported in collection and analysis methods, for instance with velocity and land cover, and also when modelling is concerned, for example by using social media mining. However, matching the data properties necessary for each part of the modelling cycle with citizen-generated data is still challenging. Nevertheless, the concept that citizen contributions can be used for simulation and forecasting is proved and further work lies in continuing to develop and improve not only methods for collection and analysis, but certainly for integration into models as well. Finally, in view of recent automated sensors and satellite technologies, it is through studies as the ones analysed in this article that the value of citizen contributions, complementing such technologies, is demonstrated.
Abstract. Citizen contributions to science have been successfully implemented in many fields -and water resources is one of them. Through citizens, it is possible to collect data and obtain a more integrated decision-making process. Specifically, data scarcity has always been an issue in flood modelling, which has been addressed in the last decades by remote sensing and is already being discussed in a citizen science scenario. In this context, this article aims to review the literature on the 10 topic and analyse the opportunities and challenges that lie ahead. The literature on monitoring, mapping and modelling, was evaluated according to the flood-related variable citizens contributed to. Pros and cons of the collection/analysis methods were summarised. Then, pertinent publications were mapped into the flood modelling cycle, considering how citizen data properties (spatial and temporal coverage, uncertainty and volume) are related to its integration into modelling. It was clear that the number of studies in the area is rising. There are positive experiences reported in collection and analysis methods, 15 for instance with velocity and land cover, and also when modelling is concerned, for example by using social media mining.However, matching the data properties necessary for each part of the modelling cycle with citizen generated data is still challenging. Nevertheless, the concept that citizen contributions can be used for simulation and forecasting is proved and further work lies in continuing developing and improving not only methods for collection and analysis but certainly for integration into models as well. Finally, in view of recent automated sensors and satellite technologies, it is through studies 20 as the ones analysed in this article that the value of citizen contributions is demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.