The progression of diabetes mellitus leads to several complications including overproduction of reactive oxygen species and reproductive alterations. As resveratrol (RES) is a powerful anti-oxidant and an anti-apoptotic compound, we hypothesized that side effects of type-1 diabetes (DM1) on male reproduction could be reduced by the RES treatment. Eighty-four prepubertal male rats were distributed into seven groups: sham-control (SC), RES-treated (R), resveratrol-vehicle-treated (RV), diabetic (D), diabetic-insulin-treated (DI), diabetic-RES-treated (DR), diabetic-insulin and RES-treated (DIR). DM1 was induced by a single intraperitoneal streptozotocin (STZ) injection (65 mg/kg) on the 30th day postpartum (dpp). Animals of DR, DIR and R groups received 150 mg/day of RES by gavage for 43 consecutive days (from the 33 to 75 dpp). DI and DIR rats received subcutaneous injections of insulin (1 U/100 g b.w./day) from 5th day after the DM1 induction. The blood glucose level was monitored. At 75 dpp, the euthanasia was performed for morphometric and biometric testicular analyses, spermatic evaluation and hormonal doses. In the D group, the blood glucose level was higher than in the DR, DI and DIR groups. Besides morphometric testicular measurements, testosterone and estradiol doses were lower in D group than in DR and DIR groups; LH dose was also lower than in DR. The preputial separation age was delayed in diabetes-induced groups. The DR and DIR groups showed an improvement in sperm mitochondrial activity, epididymal sperm counts and the frequency of morphologically normal sperms. RES treatment improved glycaemic level, sperm quantitative and qualitative parameters and the hormonal profile in DM1-induced rats and seems to be a good reproductive protector.
The aim of this study was to investigate the protective action of resveratrol against the reproductive damage caused by left-sided experimental varicocele. There was a reduction of testicular major axis in the varicocele group when compared with the other groups; the testicular volume was reduced in varicocele group in comparison to the sham-control and resveratrol groups. The frequency of morphologically abnormal sperm was higher in varicocele and varicocele treated with resveratrol groups than in sham-control and resveratrol groups. The frequency of sperm with 100% of mitochondrial activity and normal acrosome integrity were lower in varicocele group than in varicocele treated with resveratrol, sham-control and resveratrol groups. Sperm motility was also reduced in varicocele group than in other groups. The sperm DNA fragmentation was higher in varicocele group than in other groups.
We previously proposed that high expression of FAM129A can be used as a thyroid carcinoma biomarker in preoperative diagnostic exams of thyroid nodules. Here, we identify that FAM129A expression is increased under nutrient and growth factor depletion in a normal thyroid cell line (PCCL3), overlapping with increased expression of autophagyrelated protein and inhibition of AKT/mTOR/p70S6K. Supplementation of insulin, TSH and serum to the medium was able to reduce the expression of both FAM129A and autophagyrelated protein and reestablish the AKT/mTOR/p70S6K axis. To determine the direct role of FAM129A on autophagy, FAM129A was transfected into PCCL3 cells. Its overexpression induced autophagic vesicles formation, evidenced by transmission electron microscopy. Co-expression of FAM129A and mCherry-EGFP-LC3B in PCCL3 showed an increased yellow puncta formation, suggesting that FAM129Ainduces autophagy. To further confirm its role on autophagy, we knockdown FAM129A in two thyroid carcinoma cell lines (TPC1 and FTC-236). Unexpectedly, FAM129A silencing increased autophagic flux, suggesting that FAM129A inhibits autophagy in these models. We next co-transfected PCCL3 cells with FAM129A and RET/PTC1 and tested autophagy in this context. Co-expression of FAM129A and RET/PTC1 oncogene in PCCL3 cells, inhibited RET/PTC1-induced autophagy. Together, our data suggest that, in normal cells FAM129A induces autophagy in order to maintain cell homeostasis and provide substrates under starvation conditions. Instead, in cancer cells, decreased autophagy may help the cells to overcome cell death. FAM129A regulates autophagy in a cell-and/or context-dependent manner. Our data reinforce the concept that autophagy can be used as a strategy for cancer treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.