The Ascomycete Ophiostoma novo-ulmi threatens elm populations worldwide. The molecular mechanisms underlying its pathogenicity and virulence are still largely uncharacterized. As part of a collaborative study of the O. novo-ulmi-elm interactome, we analyzed the O. novo-ulmi ssp. americana transcriptomes obtained by deep sequencing of messenger RNAs recovered from Ulmus americana saplings from one resistant (Valley Forge, VF) and one susceptible (S) elm genotypes at 0 and 96 h post-inoculation (hpi). Transcripts were identified for 6424 of the 8640 protein-coding genes annotated in the O. novo-ulmi nuclear genome. A total of 1439 genes expressed in planta had orthologs in the PHI-base curated database of genes involved in host-pathogen interactions, whereas 472 genes were considered differentially expressed (DEG) in S elms (370 genes) and VF elms (102 genes) at 96 hpi. Gene ontology (GO) terms for processes and activities associated with transport and transmembrane transport accounted for half (27/55) of GO terms that were significantly enriched in fungal genes upregulated in S elms, whereas the 22 GO terms enriched in genes overexpressed in VF elms included nine GO terms associated with metabolism, catabolism and transport of carbohydrates. Weighted gene co-expression network analysis identified three modules that were significantly associated with higher gene expression in S elms. The three modules accounted for 727 genes expressed in planta and included 103 DEGs upregulated in S elms. Knockdown- and knockout mutants were obtained for eight O. novo-ulmi genes. Although mutants remained virulent towards U. americana saplings, we identified a large repertoire of additional candidate O. novo-ulmi pathogenicity genes for functional validation by loss-of-function approaches.
The dimorphic fungus Ophiostoma novo-ulmi is the highly aggressive pathogen responsible for the current, highly destructive, pandemic of Dutch elm disease (DED). Genome and transcriptome analyses of this pathogen previously revealed that a large set of genes expressed during dimorphic transition were also potentially related to plant infection processes, which seem to be regulated by molecular mechanisms different from those described in other dimorphic pathogens. Then, O. novo-ulmi can be used as a representative species to study the lifestyle of dimorphic pathogenic fungi that are not shared by the “model species” Candida albicans and Ustilago maydis. In order to gain better knowledge of molecular aspects underlying infection process and symptom induction by dimorphic fungi that cause vascular wilt disease, we developed a high-throughput gene deletion protocol for O. novo-ulmi. The protocol is based on transforming a Δmus52 O. novo-ulmi mutant impaired for non-homologous end joining (NHEJ) as the recipient strain, and transforming this strain with the latest version of OSCAR plasmids. The latter are used for generating deletion constructs containing the toxin-coding Herpes simplex virus thymidine kinase (HSVtk) gene which prevents ectopic integration of the T-DNA in Ophiostoma DNA. The frequency of gene deletion by homologous recombination (HR) at the ade1 locus associated with purine nucleotide biosynthesis was up to 77.8% in the Δmus52 mutant compared to 2% in the wild-type (WT). To validate the high efficiency of our deletion gene methodology we deleted ade7, which also belongs to the purine nucleotide pathway, as well as bct2, ogf1, and opf2 which encode fungal binuclear transcription factors (TFs). The frequency of gene replacement by HR for these genes reached up to 94%. We expect that our methodology combining the use of NHEJ deficient strains and OSCAR plasmids will function with similar high efficiencies for other O. novo-ulmi genes and other filamentous fungi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.