We aimed to investigate the effects of maternal protein restriction during mid-gestation on the skeletal muscle composition of the offspring. In the restriction treatment (RES, n = 9), cows were fed a basal diet, while in the control (CON, n = 9) group cows received the same RES diet plus the protein supplement during mid-gestation (100–200d). Samples of Longissimus dorsi muscle were collected from the offspring at 30d and 450d postnatal. Muscle fiber number was found to be decreased as a result of maternal protein restriction and persisted throughout the offspring’s life (p < 0.01). The collagen content was enhanced (p < 0.05) due to maternal protein restriction at 30d. MHC2X mRNA expression tended to be higher (p = 0.08) in RES 30d offspring, however, no difference (p > 0.05) was found among treatments at 450d. Taken together, our results suggest that maternal protein restriction during mid-gestation has major and persistent effects by reducing muscle fiber formation and may slightly increase collagen accumulation in the skeletal muscle of the offspring. Although maternal protein restriction may alter the muscle fiber metabolism by favoring the establishment of a predominant glycolytic metabolism, the postnatal environment may be a determinant factor that establishes the different proportion of muscle fiber types.
Since nutritional requirements are increased at the end of gestation to meet the demands of the pregnant uterus, pregnant beef cows are susceptible to mobilization of body reserves (mainly fat and amino acids (AAs)) and to alter the metabolism of nutrients in the liver and muscle to support such demands. The objective of this study was to evaluate the effect of CP supplementation on maternal nutrient metabolism in the late gestation of beef cows grazing a low-quality pasture. Forty-three pregnant Nellore cows gestating male fetuses (average age = 6 years; average weight = 544 kg) at 193 ± 30 (mean ± SD) days (d) of gestation were divided into eight groups (experimental units, with four to five cows each). Treatments were (1) control (CON, n = 4): pasture-based (PB) diet without CP supplementation and (2) supplemented (SUP, n = 4): PB diet daily supplemented with 2 g/kg of BW of a 43.5% CP supplement. Liver and skeletal muscle biopsies were performed at 265 days of gestation and samples were collected for mRNA expression. On day 280 of gestation, blood samples were collected to assess plasma levels of AA. The CON-fed cows tended to have greater (P = 0.057) total circulating AA than SUP-fed cows. The circulating glycogenic AA was greater (P = 0.035) in CON than in SUP cows. CON cows was greater for histidine (P = 0.015), methionine (P = 0.007) and alanine (P = 0.036) than SUP cows. The CON- and SUP-fed showed no differences for gluconeogenesis, fatty acid transport and signaling axis markers in the liver. The mRNA expression of markers for skeletal muscle synthesis, p7056k (P = 0.060) and GSK3B (P = 0.096), tended to be greater in cows from CON than SUP group. No differences were found for mRNA expression of markers for skeletal muscle degradation. We conclude that CP supplementation to CP-restricted late-pregnant beef cows reduces the maternal tissue mobilization and changes the profile of plasma circulating AA and the mRNA expression of markers for the synthesis of skeletal muscle tissue.
Objective: Twenty-four pregnant Nellore primiparous grazing cows were used to evaluate the effects of energy-protein supplementation and supplementation frequency during pre (105 d before calving) and postpartum (105 d after calving) on performance and metabolic characteristics.Methods: Experimental treatments consisted of a control (no supplementation), daily supplementation (1.5 kg/d of concentrate/animal) and infrequent supplementation (4.5 kg of concentrate/animal every three days). During the pre and postpartum periods, concentrations of blood metabolites and animal performance were evaluated. Ureagenesis and energy metabolism markers were evaluated at prepartum period.Results: Supplementation frequency did not alter (p>0.10) body weight (BW), average daily gain (ADG), and carcass traits during pre and postpartum. The BW (p = 0.079), adjusted BW at day of parturition (p = 0.078), and ADG (p = 0.074) were greater for supplemented cows during the prepartum. The body condition score (BCS; p = 0.251), and carcass traits (p>0.10) were not affected by supplementation during prepartum. On postpartum, supplementation did not affect animal performance and carcass traits (p>0.10). The dry mater intake was not affected (p>0.10) by supplementation and supplementation frequency throughout the experimental period. Daily supplemented animals had greater (p<0.001) glucose levels than animals supplemented every three days. Supplementation and supplementation frequency did not alter (p>0.10) the levels of blood metabolites, neither the abundance of ureagenesis nor energy metabolism markers.Conclusion: In summary, our data show that the reduction of supplementation frequency does not cause negative impacts on performance and metabolic characteristics of primiparous grazing cows during the prepartum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.