Background An effective biomaterial for bone replacement should have properties to avoid bacterial contamination and promote bone formation while inducing rapid cell differentiation simultaneously. Bone marrow stem cells are currently being investigated because of their known potential for differentiation in osteoblast lineage. This makes these cells a good option for stem cell-based therapy. We have aimed to analyze, in vitro, the potential of pure titanium (Ti), Ti-35Nb-7Zr alloy (A), niobium (Nb), and zirconia (Zr) to avoid the microorganisms S. aureus (S.a) and P. aeruginosa (P.a). Furthermore, our objective was to evaluate if the basic elements of Ti-35Nb-7Zr alloy have any influence on bone marrow stromal cells, the source of stem cells, and observe if these metals have properties to induce cell differentiation into osteoblasts. Methods Bone marrow stromal cells (BMSC) were obtained from mice femurs and cultured in osteogenic media without dexamethasone as an external source of cell differentiation. The samples were divided into Ti-35Nb-7Zr alloy (A), pure titanium (Ti), Nb (niobium), and Zr (zirconia) and were characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). After predetermined periods, cell interaction, cytotoxicity, proliferation, and cell differentiation tests were performed. For monotypic biofilm formation, standardized suspensions (106 cells/ml) with the microorganisms S. aureus (S.a) and P. aeruginosa (P.a) were cultured for 24 h on the samples and submitted to an MTT test. Results All samples presented cell proliferation, growth, and spreading. All groups presented cell viability above 70%, but the alloy (A) showed better results, with statistical differences from Nb and Zr samples. Zr expressed higher ALP activity and was statistically different from the other groups (p < 0.05). In contrast, no statistical difference was observed between the samples as regards mineralization nodules. Lower biofilm formation of S.a and P.a. was observed on the Nb samples, with statistical differences from the other samples. Conclusion Our results suggest that the basic elements present in the alloy have osteoinductive characteristics, and Zr has a good influence on bone marrow stromal cell differentiation. We also believe that Nb has the best potential for reducing the formation of microbial biofilms.
The objectives of this study were to characterize titanium (Ti) surfaces treated by ion implantation by immersion in oxygen plasma (O-PIII) at different temperatures, correlating these implanted layers with therapeutic effects and with osteogenesis, as well as the formation of monotypic biofilms microbial. The groups were divided into: a) Ti (pre-treatment) b) Ti O-PIII at 400 ° C. c) Ti O-PIII at 500 ° C. d) Ti O-PIII at 600 ° C. The properties and surface characteristics were evaluated according to the roughness, texture, corrosion resistance, formation of new phases and the identification of chemical compounds present. Cellular analyzes investigated cell interaction, viability, total protein content, alkaline phosphatase and quantification of mineralized nodules using MG-63 cells. The formation of monotypic microbial biofilms, including P. aeruginosa, S. aureus, S. mutans and C. albicans were evaluated. The increase in surface roughness, corrosion resistance and oxygen content, leading to the formation of TiO2-rutile with more intense peaks and in greater numbers according to the increase in the substrate temperature, ionic implanted Ti samples was observed. There was also a significant increase in cell viability, total protein production, alkaline phosphatase activity and formation of mineralization nodules for the group treated with O-PIII at 600ºC compared to other groups, in addition to a reduction of microorganisms in the groups treated with O- PIII. Therefore, treatment with O-PIII at 600ºC in Ti grade IV showed favorable results for its use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.