Antimicrobial peptides appear among innovative biopolymers with potential therapeutic interest. Nevertheless, issues concerning efficiency, production costs, and toxicity persist. Herein, we show that conjugation of peptides with chitosans can represent an alternative in the search for these needs. To increase solubility, deacetylated and degraded chitosans were prepared. Then, they were functionalized via N-succinimidyl-S-acetylthiopropionate or via glutathione (GSH), an endogenous peptide linker. To the best of our knowledge, it is the first time that GSH is used as a thiolating agent for the conjugation of peptides. Next, thiolated chitosans were conjugated through a disulfide bond with designed shortchain peptides, one of them derived from the antimicrobial peptide Jelleine-I. Conjugates and respective reaction intermediates were characterized by absorciometry, attenuated total reflectance−Fourier transform infrared, and 1 H NMR. Zeta potential measurements showed the cationic nature of these biomacromolecules and their preferential partitioning to Gram-positive bacterial-like model membranes. In vitro investigation using representative Gram-positive and -negative bacteria (Staphylococcus aureus and Escherichia coli, respectively) showed that the conjugation strategies lead to enhanced activity in relation to the unconjugated peptide and to the unconjugated chitosan. The obtained products showed selectivity toward S. aureus at low cytotoxicity as determined in NIH/3T3 cells. Overall, our study demonstrates that an appropriate choice of antimicrobial peptide and chitosan characteristics leads to increased antimicrobial activity of the conjugated product and represents a strategy to modulate the activity and selectivity of antimicrobials resorting to low-cost chemicals. The present proposal starts from less expensive raw materials (chitosan and short-chain peptide), is based on aqueous solvents, and minimizes the use of reactants with a higher environmental impact. The final biopolymer contains the backbone of chitosan, just 3−6% peptide derived from royal jelly and GSH, all of them considered safe for human use or as a physiological molecule.
Production of second-generation ethanol from lignocellulosic residues should be fueling the energy matrix in the near future. Lignocellulosic feedstock has received much attention as an alternative energy resource for biorefineries toward reducing the demand for fossil resources, contributing to a future sustainable bio-based economy. Fermentation of lignocellulosic hydrolysates poses many scientific and technological challenges as the drawback of Saccharomyces cerevisiae's inability in fermenting pentose sugars (derived from hemicellulose). To overcome the inability of S. cerevisiae to ferment xylose and increase yeast robustness in the presence of inhibitory compound-containing media, the industrial S. cerevisiae strain SA-1 was engineered using CRISPR-Cas9 with the oxidoreductive xylose pathway from Scheffersomyces stipitis (encoded by XYL1, XYL2, and XYL3). The engineered strain was then cultivated in a xylose-limited chemostat under increasing dilution rates (for 64 days) to improve its xylose consumption kinetics under aerobic conditions. The evolved strain (DPY06) and its parental strain (SA-1 XR/XDH) were evaluated under anaerobic conditions in complex media. DPY06 consumed xylose faster, exhibiting an increase of 70% in xylose consumption rate at 72h of cultivation compared to its parental strain, indicating that laboratory evolution improved xylose uptake of SA-1 XR/XDH.
Production of second-generation ethanol from lignocellulosic residues should be fueling the energy matrix in the near future. Lignocellulosic feedstock has received much attention as an alternative energy resource for biorefineries toward reducing the demand for fossil resources, contributing to a future sustainable bio-based economy. Fermentation of lignocellulosic hydrolysates poses many scientific and technological challenges as the drawback of Saccharomyces cerevisiae’s inability in fermenting pentose sugars (derived from hemicellulose). To overcome the inability of S. cerevisiae to ferment xylose and increase yeast robustness in the presence of inhibitory compound-containing media, the industrial S. cerevisiae strain SA-1 was engineered using CRISPR-Cas9 with the oxidoreductive xylose pathway from Scheffersomyces stipitis (encoded by XYL1, XYL2, and XYL3). The engineered strain was then cultivated in a xylose-limited chemostat under increasing dilution rates (for 64 days) to improve its xylose consumption kinetics under aerobic conditions. The evolved strain (DPY06) and its parental strain (SA-1 XR/XDH) were evaluated under microaerobic in the hemicellulosic hydrolysate. DPY06 exhibited 35% superior volumetric ethanol productivity compared to its parental strain.
por serem minhas maiores fontes de inspiração. Todo apoio, confiança e oportunidades dadas me fizeram crescer como pessoa, fazendo com que hoje eu pudesse concretizar e encerrar mais uma etapa da minha vida.Agradeço ao meu irmão Ivan Henrique Costa Petrin por todos os ensinamentos dados a mim.À minha família e grandes amigos, em especial Filipe Gazotto Serra, Luiza Santana, por todo reconhecimento em minha pessoa, companheirismo e amparo.Ao meu orientador Prof. Dr. Thiago Olitta Basso e coorientadora MSc. Dielle Pierotti Procópio por suas competências e auxílio durante o decorrer de toda a pesquisa e trabalho.À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) por financiar o trabalho e projeto desenvolvido desde o primeiro momento.Agradeço também ao Prof. Dr. Adriano Rodrigues Azzoni pela disponibilidade e uso do espaço físico de seu laboratório para realização por parte desta pesquisa.Além disso, a realização deste trabalho só se fez possível graças à contribuição de meus amigos de equipe do Laboratório BELa (Bioprocess Engineering Lab) e demais envolvidos de Laboratórios adjacentes.Manifesto minha sincera gratidão a todos os envolvidos, assim como todos outros que contribuíram de maneira muito significativa para a minha formação como profissional e como pessoa, em vários momentos ao longo deste período. vi "Em algum lugar, algo incrível está esperando para ser descoberto." -Carl Sagan vii RESUMO A produção de etanol de segunda geração (2G) a partir de biomassa lignocelulósica tem sido considerada uma alternativa para reduzir o uso de combustíveis fósseis e aumentar a disponibilidade de energias renováveis. Nesta perspectiva, o estudo e o desenvolvimento de linhagens de Saccharomyces cerevisiae modificadas capazes de metabolizar xilose e produzir etanol 2G são imperativos. Nesta presente pesquisa, seis cepas industriais geneticamente modificadas de S. cerevisiae são estudadas: SA1.1x123; 272-1,1x123; 272-1a.1x123; FMY001; CSY01; CSY02. Estas linhagens compreendem duas vias metabólicas diferentes para a produção de etanol 2G através da assimilação de xilose: as vias da xilose isomerase (XI) e da xilose redutase/xilitol desidrogenase (XR/XDH). O objetivo deste trabalho foi projetar e melhorar o desempenho dessas vias em cepas industriais de S. cerevisiae projetadas para transportar e consumir xilose com eficiência. No entanto, a via das cepas XI modificadas não mostraram capacidade de assimilar xilose. Por outro lado, as cepas das vias XR/XDH, capazes de assimilar xilose, foram selecionadas por engenharia evolutiva para melhor utilização da xilose em condições aeróbias e semi-anaeróbicas.Os resultados mostraram valores mais elevados de rendimentos de produção de etanol (YETH/S) para as cepas evoluídas, em que o fator de conversão de substrato a etanol foi de até 28% maior em relação à linhagem parental. Desta forma, a utilização de xilose pode expandir as capacidades de S. cerevisiae para utilizar derivados de plantas e representar um potencial para aumentar a eficiência da produção de biocombus...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.