L'accès aux articles de la revue « Annales de la faculté des sciences de Toulouse Mathématiques » (http://afst.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://afst.cedram. org/legal/). Toute reproduction en tout ou partie de cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/
We present a formula to compute the Brasselet number of f : (Y, 0) → (C, 0) where Y ⊂ X is a non-degenerate complete intersection in a toric variety X. As applications we establish several results concerning invariance of the Brasselet number for families of non-degenerate complete intersections. Moreover, when (X, 0) = (C n , 0) we derive sufficient conditions to obtain the invariance of the Euler obstruction for families of complete intersections with an isolated singularity which are contained in X.
In this work, we present a formula to compute the Euler obstruction of a function [Formula: see text] and its Brasselet number, where [Formula: see text] is a multitoric surface. As an application of this formula, we compute the Euler obstruction of a function on some families of determinantal surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.