Objective: Investigate areas of correlation between gray matter volumes by MRI and interictal EEG source maps in subtypes of mesial temporal lobe epilepsy (MTLE).Method: 71 patients and 36 controls underwent 3T MRI and and routine EEG was performed. Voxel-based morphometry (VBM) was used for gray matter analysis and analysis of interictal discharge sources for quantitative EEG. Voxel-wise correlation analysis was conducted between the gray matter and EEG source maps in MTLE subtypes.Results: The claustrum was the main structure involved in the individual source analysis. Twelve patients had bilateral HA, VBM showed bilateral hippocampal. Twenty-one patients had right HA, VBM showed right hippocampal and thalamic atrophy and negatively correlated involving the right inferior frontal gyrus and insula. Twenty-two patients had left HA, VBM showed left hippocampal atrophy and negatively correlated involving the left temporal lobe and insula. Sixteen patients had MTLE without HA, VBM showed middle cingulate gyrus atrophy and were negatively correlated involving extra-temporal regions, the main one located in postcentral gyrus.Conclusions: Negative correlations between gray matter volumes and EEG source imaging. Neuroanatomical generators of interictal discharges are heterogeneous and vary according to MTLE subtype.Significance: These findings suggest different pathophysiological mechanisms among patients with different subtypes of MTLE.
Purpose:Triphasic waves (TWs), a common EEG pattern, are considered a subtype of generalized periodic discharges. Most patients with TWs present with an altered level of consciousness, and the TW pattern is believed to represent thalamocortical dysfunction. However, the exact meaning and mechanism of TWs remain unclear. The objective of the current study was to evaluate the source of TWs using EEG source imaging and computerized tomography.Methods:Twenty-eight patients with TWs were investigated. Source analysis was performed on the averaged TWs for each individual, and source maps were extracted. Normalization and automatic segmentation of gray matter were performed on computerized tomography scans before analysis. Finally, voxelwise correlation analyses were conducted between EEG source maps and gray matter volumes.Results:Source analyses showed that the anterior cingulate cortex was mainly involved in TWs (16/28 patients, 57%). Correlation analyses showed moderate positive and negative correlations between source location and gray matter volumes for the posterior cingulate (T = 2.85; volume = 6,533 mm3; r = 0.53; P = 0.002) and the superior frontal gyrus (T = 2.54; volume = 18,167 mm3; r = −0.48; P < 0.0001), respectively.Conclusions:The results suggest that the anterior cingulate is involved in the origin of TWs. Furthermore, the volumes of posterior brain regions were positively correlated with TWs, indicating a possible preservation of these structures. Conversely, the volumes of anterior regions were negatively correlated with TWs. These findings may indicate a structural pattern necessary for the generation of the abnormal network responsible for TWs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.