Epithelial-to-mesenchymal transition (EMT) is an essential mechanism for development and wound healing, but in cancer it also mediates the progression and spread of aggressive tumors while increasing therapeutic resistance. Adoption of a mesenchymal state is also associated with increased iron uptake, but the relationship between EMT and the key regulators of cellular iron metabolism remains undefined. In this regard, the human adrenal cortical carcinoma SW13 cell line represents an invaluable research model as HDAC inhibitor treatment can convert them from an epithelial-like (SW13-) cell type to a mesenchymal-like (SW13+) subtype. In this study we establish SW13 cells as a model for exploring the link between iron and EMT. Increased iron accumulation following HDAC inhibitor mediated EMT is associated with decreased expression of the iron export protein ferroportin, enhanced ROS production, and reduced expression of antioxidant response genes. As availability of redox active iron and loss of lipid peroxide repair capacity are hallmarks of ferroptosis, a form of iron-mediated cell death, we next examined whether HDAC inhibitor treatment could augment ferroptosis sensitivity. Indeed, HDAC inhibitor treatment synergistically increased cell death following induction of ferroptosis. The exact mechanisms by which HDAC inhibition facilitates cell death following ferroptosis induction requires further study. As several HDAC inhibitors are already in use clinically for the treatment of certain cancer types, the findings from these studies have immediate implications for improving iron-targeted chemotherapeutic strategies.
The tumor suppressor gene TP53 is the most commonly mutated gene in human cancer. In addition to loss of tumor suppressor functions, mutations in TP53 promote cancer progression by altering cellular iron acquisition and metabolism. A newly identified role for TP53 in the coordination of iron homeostasis and cancer cell survival lies in the ability for TP53 to protect against ferroptosis, a form of iron-mediated cell death. The purpose of this study was to determine the extent to which TP53 mutation status affects the cellular response to ferroptosis induction. Using H1299 cells, which are null for TP53, we generated cell lines expressing either a tetracycline inducible wild-type (WT) TP53 gene, or a representative mutated TP53 gene from six exemplary “hotspot” mutations in the DNA binding domain (R273H, R248Q, R282W, R175H, G245S, and R249S). TP53 mutants (R273H, R248Q, R175H, G245S, and R249S) exhibited increased sensitivity ferroptosis compared to cells expressing WT TP53. As iron-mediated lipid peroxidation is critical for ferroptosis induction, we hypothesized that iron acquisition pathways would be upregulated in mutant TP53-expressing cells. However, only cells expressing the R248Q, R175H, and G245S TP53 mutation types exhibited statistically significant increases in spontaneous iron regulatory protein (IRP) RNA binding activity following ferroptosis activation. Moreover, changes in the expression of downstream IRP targets were inconsistent with the observed differences in sensitivity to ferroptosis. These findings reveal that canonical iron regulatory pathways are bypassed during ferroptotic cell death. These results also indicate that induction of ferroptosis may be an effective therapeutic approach for tumor cells expressing distinct TP53 mutation types.
The essentiality of iron for cell growth and proliferation, coupled with its capacity to promote damaging free radical production, has made it a desirable target for cancer treatment and prevention. One such approach may be through the activation of ferroptosis, a form of iron-mediated programmed cell death. However, we must first understand how cancer cells manipulate the homeostatic regulators of iron metabolism to promote malignancy before we can fully harness iron's therapeutic potential. The iron regulatory proteins 1 and 2 (IRP1 and IRP2) are the master regulators of intracellular iron homeostasis because they coordinate the expression of proteins involved in iron storage, uptake, and utilization. Yet, the roles and regulation of IRPs during cellular ferroptosis remain unknown. The primary objective of this work was to examine the reciprocal relationship between ferroptosis activation and IRP mRNA binding activity. Utilizing tetracycline-inducible plasmids, we found that overexpression of IRP1 or IRP2 significantly increases sensitivity to ferroptotic cell death in HEK293T cells. Intriguingly however, ferroptosis induction by erastin treatment differentially influences IRP1 and IRP2 mRNA binding activity in a cell-type dependent manner, with those cell types expressing higher levels IRP2 exhibiting increased sensitivity to ferroptosis activation. Yet, IRP2 knockout cells are still subject to ferroptotic cell death, as are cells that lack IRP1 expression. Collectively, our findings suggest that while increased expression of IRP1 and IRP2 can promote ferroptotic cell death, expression of IRP1 or IRP2 is sufficient to convey sensitivity to ferroptosis activation. To identify mechanism driving increased IRP mRNA binding activity during cellular ferroptosis, we are currently assessing both iron-dependent and -independent regulators of IRP1 and IRP2 function and stability. As iron is an essential, yet potentially toxic nutrient, such findings will be important because they are expected to provide novel insights for exploiting the toxic nature of iron without compromising the essential homeostatic control mechanisms. Citation Format: Evan Hermann, Thais Oliveira, McKale Montgomery. The contributions of iron regulatory proteins 1 and 2 to ferroptosis activation and ferroptotic cell death [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 2006.
Objectives The tumor suppressor gene TP53 is the most commonly mutated gene in human cancer, but mutations in TP53 do not just result in loss of tumor suppressor function, they can also promote cancer progression by altering cellular iron acquisition and metabolism. A newly identified role for TP53 in the mediation of iron homeostasis and cancer cell survival lies in the ability for TP53 to protect against ferroptosis, a form of iron mediated cell death. The purpose of this study was to determine the extent to which TP53 mutation status effects iron-mediated cell death in response to ferroptosis induction. We also measured TP53 dependent differences in iron regulatory protein (IRP) RNA binding activity to begin to clarify the mechanisms by which TP53 mutation status may influence sensitivity to ferroptosis. Methods Using H1299 cells, which are null for TP53, we generated cell lines expressing either a tetracycline inducible wild-type TP53 gene, or a representative mutated TP53 gene from exemplary “hotspot” mutations in the DNA binding domain (R248, R273, R282, G245, R249 and R175). These six mutation types were selected because they represent 25% of all TP53 mutations in human cancer. To determine the influence of TP53 mutation status on sensitivity to ferroptotic cell death, we treated cells with erastin, a potent inducer of ferroptosis and measured differences in cell viability between these cell lines using PrestoBlue cell viability reagent. To assess mutant TP53-depenent differences in IRP RNA binding activity during ferroptosis we measured differences in IRP RNA binding activity via Electrophoretic Mobility-Shift Assay. Results We found that TP53 mutants (R273, R248, R175, G245, and R249) were significantly less viable (P < 0.05) after initiation of ferroptosis compared to cells expressing WT TP53. Following ferroptosis induction, we observed a significant (P < 0.05) increase in IRP RNA binding in G245, R248, and R175 mutants. Conclusions Our preliminary analyses indicate that TP53 mutants may be more sensitive to ferroptosis, but IRPs do not seem to be solely responsible for the increase in iron during ferroptotic cell death. Furthermore, ferroptosis may be a potential therapeutic target for cancers with these TP53 mutations but further investigation is warranted. Funding Sources Internal funding at Oklahoma State University.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.