Modern UAS (Unmanned Aerial Vehicles) or just drones have emerged with the primary goal of producing maps and imagery with extremely high spatial resolution. The refined information provides a good opportunity to quantify the distribution of vegetation across heterogeneous landscapes, revealing an important strategy for biodiversity conservation. We investigate whether computer vision and machine learning techniques (Object-Based Image Analysis—OBIA method, associated with Random Forest classifier) are effective to classify heterogeneous vegetation arising from ultrahigh-resolution data generated by UAS images. We focus our fieldwork in a highly diverse, seasonally dry, complex mountaintop vegetation system, the campo rupestre or rupestrian grassland, located at Serra do Cipó, Espinhaço Range, Southeastern Brazil. According to our results, all classifications received general accuracy above 0.95, indicating that the methodological approach enabled the identification of subtle variations in species composition, the capture of detailed vegetation and landscape features, and the recognition of vegetation types’ phenophases. Therefore, our study demonstrated that the machine learning approach and combination between OBIA method and Random Forest classifier, generated extremely high accuracy classification, reducing the misclassified pixels, and providing valuable data for the classification of complex vegetation systems such as the campo rupestre mountaintop grassland.
O presente trabalho realiza um comparativo entre os três principais eventos de seca e crise hídrica ocorridos a partir do início do século XXI, nos anos 2001, 2014 e 2021. Por meio de revisão bibliográfica, realizou-se o levantamento de dados e informações que tangem aspectos físicos, políticos e socioeconômicos ambientais para cada um desses eventos no Sudeste do Brasil, com foco sobre as regiões que integram a Bacia do Rio Paraná. O aspecto físico abrange índices de precipitação, vazão e temperatura, bem como nível de intensidade da seca para cada evento; o aspecto político compreende as informações sobre políticas públicas e tomadas de decisão frente ao alerta e durante as crises; por fim, os impactos sociais, econômicos e ambientais advindos dos eventos de seca são contemplados no aspecto socioeconômico ambiental. Com base no comparativo, pôde-se concluir que a implantação ou melhoria de ferramentas auxiliares no monitoramento de seca e de seus impactos aconteceram ao longo dos anos, mas políticas de gestão dos recursos hídricos e de seus riscos, com atenção às pessoas vulnerabilizadas, ainda precisam ser efetivamente incorporadas para minimização dos efeitos de tais eventos e, maior resiliência e adaptabilidade das áreas afetadas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.