The use of mechanistic plant growth models relies on the availability of high-quality inputs to reduce uncertainty in estimates. Measurements of photosynthetically active radiation inside a protected environment are either more expensive to obtain or dependent on assumptions regarding external measurements. This study aimed to reduce the influence of uncertainty in the measurements of low-cost lux meters by using a data assimilation strategy. We first determined, by simulation, the impact of different sensors on the estimates. We then used the Ensemble Kalman Filter to assimilate artificial observations of tomato growth in the Reduced-State Tomgro model, in simulations for which the solar radiation inputs were obtained from a low-cost lux meter. We compared the assimilated estimates to the simulations that used solar radiation obtained with a scientific-grade quantum sensor. For periods of larger radiation intensity, in which the differences in measurements from both instruments are larger, assimilation of observations with low errors lead to estimates that are closer to the ones obtained by scientific grade sensors. These results suggest that low-cost sensors could be used to obtain inputs for growth models in protected environments, provided there are also imperfect observations of the state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.