Vector-borne pathogens threaten human health worldwide. Despite their critical role in disease prevention, routine surveillance systems often rely on low-complexity pathogen detection tests of uncertain accuracy. In Chagas disease surveillance, optical microscopy (OM) is routinely used for detecting Trypanosoma cruzi in its vectors. Here, we use replicate T. cruzi detection data and hierarchical site-occupancy models to assess the reliability of OM-based T. cruzi surveillance while explicitly accounting for false-negative and false-positive results. We investigated 841 triatomines with OM slides (1194 fresh, 1192 Giemsa-stained) plus conventional (cPCR, 841 assays) and quantitative PCR (qPCR, 1682 assays). Detections were considered unambiguous only when parasitologists unmistakably identified T. cruzi in Giemsa-stained slides. qPCR was >99% sensitive and specific, whereas cPCR was ~100% specific but only ~55% sensitive. In routine surveillance, examination of a single OM slide per vector missed ~50–75% of infections and wrongly scored as infected ~7% of the bugs. qPCR-based and model-based infection frequency estimates were nearly three times higher, on average, than OM-based indices. We conclude that the risk of vector-borne Chagas disease may be substantially higher than routine surveillance data suggest. The hierarchical modelling approach we illustrate can help enhance vector-borne disease surveillance systems when pathogen detection is imperfect.
BackgroundNeotropical primates are important sylvatic hosts of Trypanosoma cruzi, the etiological agent of Chagas disease. Infection is often subclinical, but severe disease has been described in both free-ranging and captive primates. Panstrongylus megistus, a major T. cruzi vector, was found infesting a small-primate unit at Brasília zoo (ZooB), Brazil. ZooB lies close to a gallery-forest patch where T. cruzi circulates naturally. Here, we combine parasitological and molecular methods to investigate a focus of T. cruzi infection involving triatomine bugs and Neotropical primates at a zoo located in the Brazilian Savannah.MethodsWe assessed T. cruzi infection in vectors using optical microscopy (n = 34) and nested PCR (n = 50). We used quantitative PCR (qPCR) to examine blood samples from 26 primates and necropsy samples from two primates that died during the study. We determined parasite lineages in five vectors and two primates by comparing glucose-6-phosphate isomerase (G6pi) gene sequences.ResultsTrypanosoma cruzi was found in 44 vectors and 17 primates (six genera and eight species); one Mico chrysoleucus and one Saguinus niger had high parasitaemias. Trypanosoma cruzi DNA was detected in three primates born to qPCR-negative mothers at ZooB and in the two dead specimens. One Callithrix geoffroyi became qPCR-positive over a two-year follow-up. All G6pi sequences matched T. cruzi lineage TcI.ConclusionsOur findings strongly suggest vector-borne T. cruzi transmission within a small-primate unit at ZooB – with vectors, and perhaps also parasites, presumably coming from nearby gallery forest. Periodic checks for vectors and parasites would help eliminate T. cruzi transmission foci in captive-animal facilities. This should be of special importance for captive-breeding programs involving endangered mammals, and would reduce the risk of accidental T. cruzi transmission to keepers and veterinarians.Electronic supplementary materialThe online version of this article (doi:10.1186/s13071-016-1334-7) contains supplementary material, which is available to authorized users.
Background: Conservation projects in zoos may involve translocation of captive animals, which may lead to pathogen spread. Neotropical mammals are important hosts of Trypanosoma cruzi and Leishmania spp. the etiological agents of Chagas disease and Leishmaniasis respectively. Studies of trypanosomatid-infected mammals and vectors (triatomines and sandflies) in zoos are important for the establishment of surveillance and control measures.Objectives: We investigated trypanosomatid infections in captive wild mammals, triatomines and sandflies at the Brasília Zoo. Methods:We collected triatomines during active bimonthly surveys, sampled sandflies using light-traps and obtained blood samples from 74 mammals between 2016 and 2017. We used quantitative PCR to detect trypanosomatids in vectors and mammals. Results:We found a colony of 19 Panstrongylus megistus in the porcupine unit and detected T. cruzi infections in five bugs. We captured 17 sandflies of four speciesincluding Nyssomyia whitmani and Lutzomyia longipalpis, but no Leishmania infection was detected. qPCR detected 50 T. cruzi-infected mammals belonging to 24 species and five groups of mammals (Carnivora, Cetartiodactyla, Perissodactyla, Pilosa and Primates); Leishmania DNA was detected in 23 mammals from 15 species, mainly carnivores. We detected trypanosomatid infections in 11 mammals born at the Brasília Zoo. Conclusions:Our results suggest vector-borne transmission of T. cruzi among maned wolves; measures to reduce the risk of new infections should therefore be taken. We also report sandfly presence and Leishmania-infected mammals at the Brasília Zoo. Translocation of wild mammals in and out of the Brasília Zoo should consider the risk of T. cruzi and Leishmania spread. K E Y W O R D S Conservation, Leishmania, Translocation, Trypanosoma, Zoonosis | 249 REIS Et al.
Bats are well-known hosts of trypanosomatids, though information about their role as reservoirs of these protozoans in the Brazilian savanna is poorly known. We aimed to analyze the occurrence of trypanosomatid species in bats occurring in remnants of gallery forests of Brasília, Federal District of Brazil. We sampled bats using mist nets in six sites, and we collected blood, wing fragments and oral swab samples from all captured individuals. Trypanosomatids were identified in the captured bats through sequencing of the SSUrRNA region and kDNA qPCR. We found no parasite in blood smears of 146 individuals of 14 species captured, but blood cultures were positive for nine bats. We detected trypanosomatids molecularly in 111 (76%) specimens of all bat species in the studied areas. Most of the infected bats had Leishmania-like DNA detected in blood and swab samples of the oral mucosa. We distinguished three species of Trypanosoma (Trypanosoma dionisii, T. rangeli and T. cruzi) in Carollia perspicillata. SSUrRNA PCR of oral samples is a non-invasive and practical method for identification of trypanosomatid species in bats. Our results support our belief that bats could be potential reservoirs for Trypanosoma and Leishmania-like species in the enzootic cycle of these parasites in gallery forests of the Brazilian Cerrado biome.
Introduction:Chagas disease surveillance requires current knowledge on synanthropic triatomines. We analyzed the occurrence and Trypanosoma cruzi infection rates of triatomine bugs in central Brazil, during 2012-2014. Methods: Triatomines were collected inside or around houses, and T. cruzi infection was determined by optical microscopy and conventional/quantitative polymerase chain reaction. Results: Of the 2706 triatomines collected, Triatoma sordida was the most frequent species in Goiás State, whereas Panstrongylus megistus predominated in the Federal District. Parasites identifi ed were T. cruzi, T. rangeli, and Blastocrithidia sp. Conclusions: P. megistus and T. sordida sustained the risk of T. cruzi transmission to humans in central Brazil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.